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specific heat at a constant pressure

diffusivity

energy per unit mass

total energy per unit mass

gravitational acceleration vector

joint probability density function
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entropy per unit mass

temperature

axial velocity

velocity vector, U i = 0 i + LPi

transverse velocity
molar mass

position vector
mass fraction

Dirac delta function

mixture fraction

thermal conductivity
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PROJECT SUMMARY

The overall objective of this research was to develop turbulence and chemical reaction

closure models for compressible reacting flowfields with large velocity and thermo-chemical

fluctuations, and to use these closure models in the numerical calculation of several free and

wall-bounded supersonic turbulent chemically reacting flows. This work was motivated by

the need to develop accurate models for flowfields present in a typical supersonic

combustion ramjet (SCRAMJET) engine.

The probability density function (PDF) theory was used in this work to develop a

hybrid stochastic model for such flowfields. This modeling technique couples the time-

averaged compressible flow equations with a probability density function formulation for

the chemical reactions. The advantage of this method is that it treats chemical source terms

and the state equations in a turbulent flowfield consistently, and more accurately, than

standard approaches. The basic idea behind the above hybrid stochastic model is to solve

the time-averaged mass, momentum, and energy conservation equations with standard

numerical methods, and obtain the chemical reaction solution from a stochastic model,

instead of solving the time-averaged species conservation equations. This method's

requirements can be summarized as follows:

(1) A PDF model for chemical reactions.

(2) A second order turbulence model for compressible reacting flows.

(3) A coupling between the mean flowfield and thermo-v.hemical variables.

To obtain some insight into the coupling between the mean flowfield and the

thermodynamic variables, a theoretical study of the joint PDF of velocity components and

thermodynamic variables in nonreacting turbulent compressible flows was conducted. This

analysis indicated that the principle of the hybrid stochastic model is valid as long as the

local effects created by compressibility are included in the turbulent modeling of the

velocity field. Next, two different PDF models for chemically reacting flows were

developed. The first one was a prescribed PDF model for mixing controlled chemical

reactions. This model, along with a two-equation k-_ turbulence model, was implemented

into a two-dimensional Navier-Stokes solver (RPLUS), and applied to several flowfields.

The second PDF model was based on the solution of a transport equation for the joint PDF

of a set of scalars representing species composition in a chemically reacting flowfield. This

model, along with a second-order Reynolds stress turbulence model, was implemented into

a two-dimensional parabolic flow solver and applied to a supersonic round jet. The above

work points to the theoretical superiority and numerical feasibility of such comprehensive

models for supersonic turbulent reacting flows. However, the results indicate that a robust

Navier-Stokes solver with a total variational diminishing technique is required for the

numerical solution of the governing transport equations in flowfields with a shock or a

contact discontinuity, and the use of artificial numerical dissipation models can lead to

serious complications.
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The chemical reaction and turbulence models developed in this work can substantially

increase the accuracy and versatility of the present computer codes used for the prediction

of supersonic turbulent reacting flows. Aircraft engine companies and defense industries

will be the main users of the resulting codes as a research and development tool. However,

models developed here can be used by researchers and engineers in a variety of other
applications such as laser technology.
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INTRODUCTION

The modeling of chemically reacting turbulent flows at supersonic speeds has been

attempted by many investigators since the late 1950's (Refs. 1 and 2). However, the physical

and mathematical complexities of this problem have prevented the development of

satisfactory models for the turbulence and combustion mechanisms and their influence on

each other in a compressible flowfield.

A widely used approach to the solution of both the subsonic and supersonic problems

is to consider the Reynolds averaged conservation equations of total mass, individual

species mass, total momentum, and total energy in addition to equations of state relating

the thermodynamic quantities for compressible flowfields. Introduction of models for the

averaged chemical source terms and models for the turbulence correlation quantities in

terms of the mean flow quantities would completely define the set of equations to be solved.

The major drawback to this approach for both the subsonic and supersonic cases is the

dependence of the chemical source terms on the average thermodynamic quantities. If the

local combustion process involves reacting fluid parcels, some of which are at higher than

average temperatures and some at lower than average temperatures, the average reaction

rate would be biased toward the high-temperature side because of the exponential

dependence of chemical reaction rate on temperature. Thus, the average state of reaction in
a turbulent flow would be greater than that defined by the average temperature, and a

computational model that accounted for only average temperature in the calculation of the

chemical reaction rate would predict blowout more readily, i.e., at a higher fuel-air ratio

than actually observed (Ref. 3). The higher pressure fluctuations along with lower mean

pressure ranges, coupled with the short residency time of the fuel-air mixture in supersonic

ramjet engines, make the treatment of the chemistry rate a more crucial factor in the

modehng of supersonic combustion.

In recent years there have been many extensive efforts to devise more satisfactory

methods for the treatment of the chemical source terms (Ref. 4-8). These methods range

from simple phenomenological modeling of turbulent reaction (Ref. 7) to the solution of the

exact, unaveraged governing equations (Ref. 8). Phenomenological modeling is

accomplished by decoupling the turbulence from the chemistry through consideration of the

dominant time scales and classifying the reaction mechanisms into either mixing controlled

(diffusion flame) (Ref. 9) or chemistry controlled (premixed flame) (Ref. 10). One of the

more promising approaches to the modeling of the chemically reacting turbulent flowfields

is the application of the theory of single-point joint Probability Density Function of the

velocity components and the thermo-chemical scalar fields (Ref. 11). A transport equation

for this joint PDF can be obtained from the partial differential equations which define the

conservation laws of the system. This method treats the rate-dependent source terms in the

species equation exactly. Such PDF methods are also remarkably successful in alleviating

many other modeling difficulties. For example, the effects of convection and the body force

are treated without any approximations (Ref. 11). However, there are other terms

appearing in the transport equation of the single-point joint PDF that require complicated
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models. These non-closed terms include the correlation of variables at different spatial and

temporal points and also include terms due to the effects of pressure and molecular

transport.

The method of solving a modeled PDF equation was pioneered by the work of

Lundgren (Ref. 12), who modeled and solved a transport equation for the joint PDF of

velocity in a nonreacting, incompressible field. Dopazo and O'Brien (Ref. 13 and 14)

derived, modeled, and solved the transport equations for the joint PDF of a set of scalars

representing mass fractions and enthalpy describing the thermochemical state of the fluid.

As mentioned before, complicated reactions can be treated exactly with this approach in
contrast to conventional turbulence models in which mean reaction rates must be modeled.

A major obstacle to the solution of the modeled transport equation of the joint PDF, for both

velocity and thermochemical scalars in a compressible flow case, is the problem of obtaining

a numerical solution for a realistic problem. This is due to the fact that the single-point joint

PDF, for compressible reacting flows, is a function of a large number of independent

variables. For a simple reaction, involving only three chemical species in three dimensions,

such a general PDF is a function of 11 independent variables (Ref. 15). The numerical

solution of the transport equation of such a function is prohibitively time consuming.

Therefore, with the present computational powers, a simplified version of the fully joint
PDF is desirable.

The complexities of physical phenomena in a turbulent chemically reacting

compressible flow suggest that there is no one method of modeling that is superior in all

applications. Depending on the nature of the time scales involved in the chemical reaction

and the flowfield, an appropriate approach may be to design models that are best suited to

the particular physical circumstances under consideration. However, ideally, one is looking

for a comprehensive approach that would lead to simpler models in extreme cases. The

probability density function (PDF) theory was used in this work to develop a hybrid

stochastic model for such flowfields. This modeling technique couples the time-averaged

compressible flow equations with a probability density function formulation for the

chemical reactions. The advantage of this method is that it treats chemical source terms and

the state equations in a turbulent flowfield consistently, and more accurately, than standard

approaches. The basic idea behind the above hybrid stochastic model is to solve the time-

averaged mass, momentum, and energy conservation equations with standard numerical

methods and obtain the chemical reaction solution from a stochastic model, instead of

solving the time-averaged species conservation equations. This method's requirements can

be summarized as follows:

(1) A PDF model for chemical reactions.

(2) A second order turbulence model for compressible reacting flows.

(3) A coupling between the mean flowfield and thermo-chemical variables.

To obtain some insight into the coupling between the mean flowfield and the

thermodynamic variables, a theoretical study of the joint PDF of velocity components and
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thermodynamicvariables in nonreacting turbulent compressible flows was conducted. This

analysis indicated that the principle of the hybrid stochastic model is valid as long as the

local effects created by compressibility are included in the turbulent modeling of the

velocity field. Next, two different PDF models for chemically reacting flows were

developed. The first one was a prescribed PDF model for mixing controlled chemical

reactions. This model, along with a two-equation k-_ turbulence model, was implemented

into a two-dimensional Navier-Stokes solver (RPLUS) and applied to several flowfields.

The second PDF model was based on the solution of a transport equation for the joint PDF

of a set of scalars representing species composition in a chemically reacting flowfield. This

model, along with a second-order Reynolds stress turbulence model, was implemented into

a two-dimensional parabolic flow solver and applied to a supersonic round jet.

Chapter One of this report is concerned with the derivation of the density-weighted

averaged Navier-Stokes equations for compressible turbulent chemically reacting flows.

Several turbulence models and a prescribed PDF combustion model for the above flowfields

are also presented in this chapter. Chapter Two discusses the implementation of these

models into the RPLUS code and presents the results of the application of the code to

several free and wall-bounded supersonic turbulent shear layers with and without chemical

reaction. Chapter Three is concerned with the theoretical formalism behind the joint PDF

formulation for compressible turbulent flowfields. In Chapter Four, modeling and solution

of the transport equation of a joint PDF for a supersonic hydrogen-air flame is considered.

This is the final report for the NASA contract NAS3-25663. Topics related to tasks one

and two of the contract are discussed in Chapters One and Two. Chapter Three is

concerned with topics related to Tasks Three and Four, and Chapter Four is devoted to

discussion of topics related to Task Five of the contract. Several versions of the modified

RPLUS code have been delivered to the contract's technical monitor (Mr. Russ Claus)

already; however, a final version wiU also be submitted with this report.

...
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CHAPTER 1. GOVERNING EQUATIONS AND MODELING APPROACHES

In this chapter, the governing transport equations and auxiliary relations of a

compressible chemically reacting turbulent flowfield are reviewed briefly. Next the density-

averaged form of these equations is discussed. The modeling of the Reynolds stress tensor

and other turbulent fluctuation correlations appearing in the averaged equations is

discussed in Sections Three and Four. The nondimensionalized form of the averaged

governing equation is given in Section Five. In the last section an assumed probability

density function combustion closure model is presented, and equations needed by this
model are discussed in detail.

1.1 Exact Governing Equations

Consider a mixture of N gaseous species, in which density, species mass fraction, and

velocity at a point in space and time are defined by

N

P " Z Pn (i.i.I)
n=l

y __pn/pn (1.1.2)

N

U ,_ ,Z_ _Un Pn/P (1.1,3)
n=l

The conservation laws of mass, species, momentum, and energy are applied to the above

mixture. Utilizing the Cartesian tensor notation to express the equations in general three-
dimensional form the following equations are obtained:

Mass Conservation:

op o
a'-'t"+ _ (RUj) -- 0

3

Species Conservation:

(i.i.4)

c]Y

a a ___n)
a--{(PYn) + _ (pU Y - " T (1.1.5)j n PDn @xj n

n = I, 2,..., N-I

Momentum Conservation:
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a _ .U. + 6 .P - r .) = pG
_-_ (PUi) + _x. (PU 3 i i3 i3 i

3

i = I, 2, 3

(1.1.6)

Energy Conservation:

N

pUjet+PUj-IijU i- _-h3-_. + X
a-t (Pet) 3xj P 3 n=l

Auxiliary Relations:

N Y 8U. 8U.
l 3n

P - pRT _ _-, 3.. = ;I (-_x. + _x13
n=l n 3 x

pD c aY }n(" r )hn .
]

- pGjUj

(1.1.7)

Z Y = ,, %=h-_+ un P 2 '
n=l

T N

o +I c dT, h= X
h n = hf Pn n=ln T

0

h Y
n n

The chemical source terms depend on the particular chain of reactions taking place.

Let a particular chain of reactions be represented by the following symbolic equation

N , kf N

Z qj A_ J Z
i-i

i-1 _j

It

Yij A. (1.1.8)1

j - I, 2, ..., J

where A i is the chemical symbol for species i; y_j, and y'_j are the constant stoichiometric

coefficients for species i appearing as reactant and product, respectively, in reaction j, where

there are J reaction steps decided by the chemical kinetics model chosen. The k's denote

Arrhenius rate constants that depend only on temperature for reactions in ideal gas

mixtures. The species source terms are then given by
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where

J

n nj
j=l

N Y_ j , ) N Y_'j
-- (F". - ' ) kf (pYi) - ( " -Tnj -n 3 Ynj . i=_l Ynj Ynj _j i=Ul (OYi)

3

and kf, = _j T 3 exp (- Taj/T)
3

(1.1.9)

flj and al are Arrhenius constants. Taj is the activation temperature for the jth reaction step
(Ref. 16).

1.2 Averaged Governing Equations

The system of equations presented here represents the instantaneous state of the

system from an Eulerian point of view. The solution to this set requires a great deal of

computing power to accurately resolve all of the important scales of the problem. One way

of reducing the scales involved in the problem is the introduction of statistical ensemble

averaging, which divides the flowfield into the mean quantities, which are ensemble-

averaged, and the fluctuating quantities. The mean quantities are solutions of the averaged

governing equations, which contain the correlations of the fluctuating quantities. The

modeling of these unknown correlations is called the closure problem and often results in a

larger, but more accessible, set of equations whose solution gives the variation of mean and

correlated quantities in the flowfield. Density-weighted ensemble averaging is

recommended for variable density flowfields (Ref. 5). Except for the density and pressure,

which are not density weighted, any other field variable can be represented as

_(x, t) -_(x, t) + _"(x, t) (1.2.1)

where _(x, t) -p(x, t) O(x, t) / p(x, t) (1.2.2)

is a density-weighted mean and _" is the fluctuating part. The averaged density p(x_, t) is

defined by

N
-- 1
p(x, t) = _ _ Z Pi (x, t) (1.2.3)

i=l
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where N is the number of experimental repetitions, and the density is then given by

p(x_, t) =/_(x_, t) + p'(x_, t) where p'(x_, t) is the fluctuating part.

In cases of stationary processes, the ergodic assumption allows the use of time

averaging instead of ensemble averaging, and mean quantities will become independent of

time. Application of the above decomposition to all dependent variables in the governing

equations and the subsequent averaging results in the form of the equations given below.

Mass Conservation:

m

a_£p+ a (_0) = o (1.2.4)
8t 8x. i

l

Species Conservation:

3 _n ) 8 -- _ 8 -- - ___nn)(P + _ (P UiYn + P UZYn) " 3x (p D +• n - n
a. 1 _x i

(1.2.5)

n - I, 2, ..., N-I

Momentum Conservation:

3 -0 a - 3_ -
_(P i) + 3x, (P0i0j + P_) "_ - _ + PGi

3 i

aOi aOj 2 301

3xj

(1.2.6)

i -. i, 2,3
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Energy Conservation:

8 a _"
F_ (Pet) + -- - o8x (pUjet + pU"e") = --. -- ---, - j t - _ (PU + PU") +

3 3 3 3 pUjSj

(1.2.7)

a (_.0 + Ti u,-----v)+ a (_+ 8-_. 13 i j i a-_ -
3 j c

P

ox-)+ _--(pDc /_- i)_ 0_)]
j j n=l c n p n

p 3

with tile auxiliary relations:

N

77 _n
I n= !

= 1

1 --2 1 -- U?2 _
+_PUi+2P

I - I c (_) aT ]ha " h fn + 1 [ P T
p T Pn

O

I
N

It tt

_ (h Y + hnYn)
n=l n n

(1.2.8)

(1.2.9)

(1.2.10)

(1.2.11)

P

N Y T"Y"

n 1 n)= RP_" Z (_- +
n=l n @ Wn

(1.2.12)

-- j -

"it" '= Z Tnj n "- 1, 2,
n j=l

a • • 6

The Tnj are obtained by averaging Equation (1.1.9).

N (1.2.13)
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There are two assumptions which are implicit in the above averaged equations. The

first is that, in all of the conservation equations, the fluctuations of the molecular diffusivity

can be neglected in comparison to the mixing created by velocity fluctuation throughout the

turbulent region at high Reynolds numbers. Fluctuating molecular diffusion terms are also

negligible in comparison to the mean diffusion effect in near-wall regions, since they

approach zero in these regions. The second assumption is that the effect of thermodynamic
fluctuations on the molecular properties of the mixture is negligible and molecular

properties are evaluated at the mean thermodynamic values. Therefore,

v = v(%

E)n = Dn(T)

,:/cp = _/cp = K(%/cp(%

This assumption is valid for molecular diffusion coefficients at high Reynolds numbers.

However, the above approximation for specific heat at constant pressure can be inaccurate

at high Mach numbers. Therefore, caution must be exercised in the application of this

assumption to the evaluation of species' enthalpy as a temperature integral of the specific

heat at constant pressure (see Equation 1.2.7).

1.3 Turbulence Closure Models

Upon examination of the set of averaged governing equations it becomes clear that

there are a large number of unknown correlations that need to be modeled before the

solution can be attempted. The conservation of momentum requires modeling of the

Reynolds stress tensor, i.e., U'_U' i. Since the behavior of these terms has a major influence on

the velocity field, their modeling constitutes the centerpiece of the turbulent flow structure.

These terms are extensively studied for incompressible flowfields (Ref. 17). Several

approaches to the modeling of Reynolds stresses in compressible flows will be presented in
this section. These include second order Reynolds stress modeling, two-equation eddy

viscosity k-_ modeling, and a zero-equation eddy viscosity modeling approach. The

modeling of the other turbulent fluctuation correlation terms explicitly appearing in the

averaged governing equations is dependent on the modeling of the Reynolds stresses and

will be discussed in a later section.

1.3.1 Second Order Modeling

Reynolds stresses can be viewed as dependent variables and their values can be

obtained directly by solving their transport equations. The exact transport equations for the

Reynolds stresses can be obtained by multiplying the instantaneous momentum equation

with a component of the velocity fluctuation and then taking a density-weighted average of

the resulting equation. After some algebra, the following equation is obtained:

-6-



(a) (b) (c)

(1.3.1)

I- 1+ • - + T ._

3 3aXiJ _ li_Xl 133X I

(d) (e) (f) (g)

Term (a) represents the transport of Reynolds stresses due to the mean motion of the

flow and does not require any modeling at this level of closure. Term (b) represents the

transport of Reynolds stresses due to velocity fluctuations and acts as a diffusive flux for

the Reynolds stresses at high Reynolds numbers where the molecular diffusion will be

negligible. The most widely used model for this term, suggested by Daly and Harlow (Ref.
18), is given as

C m
(1.3.2)

where _l = 1_ is the turbulent kinetic energy and _ is the rate of dissipation of turbulent

kinetic energy. Note that the modeled form doesn't have the symmetry properties of the
triple velocity correlations.

Term (c) in Equation (1.3.1) represents interaction between the mean and fluctuating

motion which leads to exchanges of energy between the mean and the turbulent motion.

This term is referred to as the turbulent production term and requires no modeling at this

level of closure. Term (d) in Equation (1.3.1) is identically zero for constant density flows

but is potentially very important for compressible flows with large pressure gradients, such

as a shocked__ flowfield or a highly accelerated flow. The model suggested by Rubesin (Ref.

19) for LP_is adopted here. This model is given by

U--_,' ,- 1 ~_ I1 II

l U.U.U. (1.3.3)
(n-l)c T 3 i 3

P

where n is a polytropic coefficient (n = 0 for isobaric processes, n = 1 for isothermal

processes, n = Cp/C v for isentropic processes, etc.) and Cp is the specific heat at constant
pressure.

Term (e) represents the interaction between the fluctuating pressure gradient and
fluctuating velocity field. It can be divided into two terms.

-7-



o,+p'ui_ + j_ +xI +i1_Jp

_U':

(1.3.4)

The first term is interpreted as spatial transport of Reynolds stresses due to the

pressure fluctuations and is lumped with the triple velocity correlations given by Equation

(1.3.2). This pressure-induced diffusion term destroys the symmetric character of triple

velocity correlations and makes the modeled form more appropriate. The combined term is

modeled as

~ _U'_U'_

[ouiuiuj,,,,,,+ +iiu'ip', +jlU'_o' :%0 _ _._J (135)
m

The second term transfers energy from one component of the Reynolds stress tensor to

another due to collision-like interaction of turbulent eddies. It represents the distribution

mechanism between Reynolds stresses. The modeling of this term for chemically reacting

flows has been considered in detail by Farshchi (Ref. 20). Neglecting the effect of heat

release this model can be given as

a. -C pE--IU"U" 2 6ij_ ] (C2 + 8)p' + =

(8C 2 - 2) 2 -~
11 {Aij - 3 6ijn] - (30C2-55 2) Pq [_.+'aUi T_xilauJ?

]

(1.3.6)

au I (6c2 + 4) _ (40c 2 + 12)

where

_-_a_ z _,a_j.,

.±j- -_(w,w ,--j ujula:<1+ 2_ii Aij"t i 13Xl " "--I, _ - and -p[U_U_sx_

Term (f) represents molecular diffusion of Reynolds stresses. At high Reynolds

numbers this term is negligible in comparison with the turbulent diffusion term given by

Equation (1.3.5). However, near solid walls and in recirculating regions, where the

Reynolds number is small, this term must be accounted for. It requires no modeling.

-8-



Term (g) is a viscous non-diffusive term which is related to the destruction of Reynolds

stresses by viscous action. It represents transfer of turbulent kinetic energy to thermal

energy by the viscous action. This interaction can take place only at very small scales of

turbulent motion where molecular viscosity has a large role. Since at the small scales

turbulent motion is isotropic, an isotropic model is chosen to represent this term, and it only

effects the normal components of the Reynolds stress tensor. The total rate of dissipation for

a Reynolds stress component is given as

%U': 3U_ 2 ~
3 + --= - _ 6 (I 3.7)

Tli 3x--_ rlj 3x I 3 ij

The quantity denoted by _" is the rate of turbulent kinetic energy dissipation by the

molecular viscous action. This quantity can be combined with the powers of the turbulent

kinetic energy to define the time or length scale of the energy containing turbulent

fluctuations. A transport equation for the rate of turbulent kinetic energy dissipation will be

developed here to complete this modeling approach.

The modeled Reynolds stress equation is then given by

8U"U"

at (p U_U_) + _ (pU ) - C_ p _E U"U"Im 3U_U_axm+ _ aXl "

'°  '°JlI 12 p£6 - [p UIU j _ " " " 3P " 3P- 3 ij 3x I + _ UIUi 3x I - Ui 3x. + U.3 3 3x i

" " 2 ~ 2
- _ IUiU_. _ _ 6 ] (c2 + 8)- -+

q

(1.3.8)

[ 2 ] ,3oc22, ,°j(8C2 6ijn - p q +-
Ii Aij - 3 55 3x. 3x i

3

-- 3UI (6C2 + 4) _ (40C 2 + 12)

P-- _ ii U.U -
ax I i j 55

where C s = 0.25, C 1 = 1.5, C 2 = 0.4, and U'_ is given by Equation (1.3.3).
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The last unknown remaining in the modelled Reynolds stress transport equation is the

rate of turbulent kinetic energy dissipation, _. An exact transport equation for _"can be

obtained from the Navier-Stokes equations (Ref. 21)o A physical interpretation of the

individual terms in _-equation for incompressible flows has been provided by Tennekes

and Lumley (Ref. 22). However, none of the terms in this equation are accessible to

measurement, making modeling of this equation very difficult. A well tested _-equation for

incompressible flow is proposed by Launder et al. (Ref. 23). This equation for variable

density flows, in density weighted form, is given as

1

I

I

l

[ ( oj l - + - - u,:u,: 1ij C p i ] . -CclP i 3 Ox.
3 E l q ]

-Cc2P - + Cc3PV - ] m %
q _:

(1.3.9)

An exact transport equation for the dissipation rate of turbulent kinetic energy of

compressible flowfields can also be derived (Ref. 24). As expected, such an equation is more

complicated than its incompressible counterpart. However, it clearly suggests the

contributions of the mean velocity divergence and the mean pressure gradient. The mean

velocity divergence term is exact and requires no modeling. It is given as

d0.
2 -- 1

- - pE
3 3x.

l

The mean pressure gradient contribution is modeled as

C_3- z _x i
q

consistent with a similar term in Reynolds stress Equation (1.3.8).

The final modeled transport equation for the rate of dissipation of turbulent kinetic

energy in compressible flowfields is given as
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_t (p,u)
0

+
OX.

3

-
-- q UiUjl -C£1P _.[(pUjE) -I_6ij + C£p -- _--.] - -- UiU j

• q ]

_ _ 2_.

--- q UjU m (axj0x I)
C 2p - _ + C_3PV -

q

a2U,
1

( ) (1.3.10)
aXmaX 1

1 _ aP" 2 8U"
Ill I!

Ce4 ~ UjUiUj 3x 3 O e 3x.
q (n-l)C T i l

P

with

C a = 0.2, CE1 = 1.28, Ca2 = 1.8, Ca3 = 2.0, C_4 = 1.0.

The system of equations given by Equations (1.3.8) and (1.3.10) establishes a second

order model for Reynolds stresses appearing in the mean momentum equations. There are

seven equations for three-dimensional equations that must be solved simultaneously with

the mean flow variables. Results from application of this model to a round jet hydrogen fuel

will be presented in the next chapter.

1.3.2 Two-Equation Eddy Viscosity Modeling (k-c)

At large Reynolds numbers the molecular diffusive forces are negligible in comparison

to the convective forces, and the momentum equation is a balance between the convective

terms and the gradient of turbulent shear stresses that appear as source terms. The

numerical solution of this form of the momentum equations creates difficulties due to the

lack of diagonal dominance of the matrices created by finite differencing of the equations

(Ref. 25). This numerical integration difficulty plus the large number of equations that must

be solved necessitates development and use of less complex and more numerically stable

turbulence closure models. The turbulent eddy viscosity concept is used to define an

apparent flow viscosity in terms of the mean flow variables and/or turbulent quantities

representing time and length scale of turbulent energy containing motion. Next the

Reynolds stresses are related to the gradient of the mean velocity field through the eddy

viscosity concept (Ref. 26).

-,---" "a i a51"

-pU"U': -- [ j 2 O-_l ] 2i ] = PVt _ + 3xi 3 6ij - _. 6ijpq (1.3.11)

In the k-_ modeling approach v t is defined as
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q2V = C --
t _ _

(1.3.12)

where C/j = 0.09

Transport equations for _l and _ are obtained, modeled, and solved to define v t at every

point in the flowfield. The modeling of _ equation was already discussed and a modelled E

equation given by Equation (1.3.10). The Reynolds stresses appearing in Equation (1.3.10)

are replaced by their eddy viscosity model given by Equation (1.3.11). To obtain a modeled

transport equation for the turbulent kinetic energy, q, one can simply contract the (i,j)

indices in Reynolds stress Equation (1.3.8). The resulting equation is given as

a--t(Pq) + _, [(pUjq) - _6ij + CsP q U.U,I3 _-_.]

~ " " i I ~ _ aP

-pc - p UiU j 3x, _ 3x,l3 (n-l)c T UjU_'U
P

(1.3.13)

Equations (1.3.13)and (1.3.10) along with the auxiliary relation for the Reynolds stresses

given by Equation (1.3.11) and (1.3.12) constitute a k-_ turbulence model.

It is important to note that the above method of derivation of k-¢ equations is based on

the second order turbulence models developed for the Reynolds stress equations and has

the advantage that the same constants as for the second order turbulence model can be used

here. In addition, the turbulent diffusion coefficients in both k and _ equations have a

second order tensorial nature, rather than a scalar behavior, and are given by p U'i'U' i q/_.

In a homogeneous turbulent flowfield the eddy viscosity model for Reynolds stresses

reduces to LP_Ui' = 26ij q and the above diffusion coefficient reduces to

~2
2 2 -~

-- 6ij 3C @vt6ij

which is an isotropic model consistent with models used in traditional two-equation eddy

viscosity models.

The k-c model, given by Equations (1.3.9) and (1.3.13), is only valid away from solid

walls. To extend the k-_ turbulence models to wall-bounded flowfields, many models have

been suggested (Refs. 27 and 28). These models are based on the consideration of the

behavior of the turbulent kinetic energy and eddy viscosity near a solid wall. A simple
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Taylor series expansion of the fluctuating velocity components near a solid wall, y = 0,

requires that q - y2 and vt - y3 (ReL 17, p. 96). To adjust the behavior of turbulent kinetic

energy and its rate of dissipation near a solid wall, sink terms are added to their transport

equations. Next the eddy viscosity is modified to include damping effects due to the

presence of the solid wall. After detailed examination of several of these models, Jones and

Launder Model (Ref. 29) and Chien Model (Ref. 30) were chosen for implementation in the
flow solver.

To present the k-_ equations for both these mo_._,_ddelsin a uniform and compact form, the

normalized Reynolds stress is denoted by _ij E U'/Ui'/q 1 which, on using the eddy viscosity
concept given by Equation (1.3.11), can be rewritten as

_iJ = - _ Vtl3-_. + 3x 3 6ij 3--_iJ+ 36i j (1.3.14)
q 3 i

Equations (1.3.13) and (1.3.10) for turbulent kinetic energy and its rate of dissipation are
rewritten as

and

_~ 3 [_6i j C' j -Pq{ij_ _j_ - s _t a_ a_

-~ ~~ ap
pE - 1 U q _ij

(n-1)c T J 3x.l q
P

(1.3.15)

_--_ _ [pU jE
3

+C"-- j 3-'-_-] =
/* 1

- _ ~ _
_C 2f p _ _ _ C 4_ 1 _._ __ +

q (n-l)c T 3 ij _x.1
P

-C¢IP¢{ij
3

(1.3.16)

ce3-_,_,,_ r a26j. . a2,Yi _ui
--q--P t jm_3xi_x II 13x_ II - 2_ _'_i - S,E
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The value of the constants and the form of the sink terms are given in Table 1.

I

I

I
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Model

Chien's

Jones-Launder

C_

0.09 [1-exp (-0. 0115y +) ]

0.09exp[-2.5/(l+.02Ret}]

C_1

1.28

1.55

C_2fc

2

1.8 [1.0--_.exp (-Re2/36} ]

2

2.0[l.0-0.3exp(-Re t) ]

CE3

0.0

2.0

Sq

7

[a_1/212
2_ ta-_9---j

2 p _y--..2-exp(-y*/2)

with C' s = 0.25,

denoted by y and Re t

TABLE 1

C a = 0.2, and C_4 = 1.0 for both models. The normal distance to a solid surface is

= _--=-- denotes turbulent Reynolds number.
VE
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The turbulence models described here are intended for use in a supersonic reacting

flowfield and should accurately reflect compressibility effects present in such flow fields.

Except for density-weighted averaging of the governing equation and the mean velocity

divergence terms appearing in the Reynolds stresses eddy viscosity equation, (1.3.14), and

the dissipation equation, (1.3.16), the above models have no means of accounting for the

compressibility and high Mach number effects. The prediction of the behavior of supersonic

diffusion flames is particularly sensitive to the rate of turbulent mixing between the fuel and

oxidizer streams. At supersonic speeds it has been shown that the convective Mach number

of large eddy structures, in the mixing region between the two supersonic streams,

substantially influences the rate of spreading of the mixing layer (Ref. 31). Zeman (Ref. 32)

has introduced the "dilatation dissipation" as the extra compressibility term in the kinetic

energy equation. He used a modeled shock wave structure within the turbulent eddies to

obtain the functional form of the compressibility correction. This compressibility term

contained two new modeling coefficients, one of them being the kurtosis of the turbulence.

Appropriate values of these modeling coefficients were obtained by matching the

computational result with the experimental data for the behavior of free shear layers

presented in Ref. 31. The Zeman model for total dissipation is given as

_tot = 3(1 + CdF(Mt)) (1.3.17)

where

-F (Mt) -_

if M __ 0.i,
t

otherwise

(1.3.18)

Mt - _ and Cd - 0.75 (a is the

a

local speed of sound).

is obtained from Equation (1.3.16) and _tot used in Equations (1.3.15) and (1.3.12) for the

turbulent kinetic energy and eddy viscosity respectively. It is important to note that

dilatation dissipation is functionally dependent on the local turbulent Mach number, M t,

and is not explicitly related to the convective Mach number of the large eddy structures in

free shear layers. The application of this model to free and wall-bounded shear flows is

considered in the next chapter.

1.3.3 Zero-Equation Eddy Viscosity Modeling

The lowest level of turbulence modeling can be achieved by expressing the turbulent

eddy viscosity, vt, in terms of the local turbulent time and length scales derived from the

mean flowfield quantities (Ref. 26). Therefore, there are no turbulent quantities to solve for.
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This is the simplest and numerically most stable method of turbulence modeling. However,

the development of these models is highly dependent on the insight of the individual

modeler, and their application is restricted to the simplest possible flowfields. For more

complex flowfields an ad hoc combination of these models without any degree of

universality is required. The physical insight used to develop these models makes them

very powerful for simple flowfields and impossible to apply to complex ones.

One of the most successful models for wall-bounded shear flows is the Baldwin-Lornax

model (Ref. 33), which is extensively used by many researchers. This model was

implemented in the original version of the RPLUS code (Ref. 34) and does not require any

further explanation. For free shear layers a simple Prandtl mixing length model is used.

The Reynolds stresses are related to the mean velocity gradients according to Equation
(3.11), and the turbulent eddy viscosity is given as

i t = C m AU 6 (1.3.19)

C m is set to 0.01 for plane mixing layers and plane jets, and AU is the maximum

velocity difference across the layer. For mixing layers 6 is defined as the distance between

points where the velocity differs from the free stream velocity by 5 percent of the maximum

velocity difference across the layer. For symmetrical flows (jets, wakes), 6 is double the

distance from the symmetry axis to the point at which the velocity differs from the free

stream velocity by 50% of the maximum velocity difference across the layer.

Zero-equation models were used in this work as a baseline model to evaluate the two-

equation model performance for several flowfields. Some of these results will be discussed
in the next chapter.

1.4 Finite Rate Reaction Closure Model

Given a model for Reynolds stresses, pU'_Uj_", the modeling of the other turbulent

fluctuation correlations appearing in the averaged governing equations (1.2.4 to 1.2.13) can

be discussed along similar lines. Considering the mean total en_equation, (1.2.7), the

first term to be modeled is the turbulent total energy flux term, pUi'e _. Using the definition
of total energy this term can be expanded as

_=- ,"T_,. --pU'jh + PUiU'iUj + _p_ _'_j, (1.4.1)

To model the first term on the right-hand side of the above equation one can assume (Ref.

17) that turbulent enthalpy fluctuations are caused by velocity field fluctuations and are

dependent on the gradient of the mean enthalpy, such that

h"- (1.4.2)
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therefore

(1.4.3)

The coefficient that changes this proportionality to an equality should have the dimensions

of the turbulent time scale. Assuming that the turbulent time scale of the scalar fluctuations

is directly proportional to the turbulent time scale of the velocity fluctuation, q/_, the above

relation can be written as

- (1.4.4)

J -ChP E

with C h = 0.36. At the second-order Reynolds stress closure model level this equation

represents a complete closure for the turbulent enthalpy flux term. However, if turbulent

eddy viscosity models are used for Reynolds stresses, then Equations (1.3.11) and (1.3.12)

and the definition of normalized Reynolds stresses can be used to represent the above

equation as

-_ -I- ~ ah (1.4.5)
pU".h" - -_h p Vt_ij 8x--_3

where o"h = C_/Ch. It is important to note that a simpler, but less general, model of this

term can be presented as

-----" -i- ~ ah (1.4.6)
pU"h" - -Pr t P Vt6ij ax--_3

which is an isotropic subset of the above model where _ij = 6ij and _rh = Pr t is usually set

equal to 0.7. This model is usually used in zero-equation turbulence models.

The second term on the right-hand side of Equation (1.4.1) does not require any

modeling and is provided by one of the turbulence models discussed in Section 3. The

modeling of the triple velocity fluctuation correlations appearing as the third term on the

right-hand side of Equation (1.4.1) was already discussed and is given by Equation (1.3.2)

which can be rewritten as

i _ C' aqs -~ (1.4.7)
"-- PVt §ij ax--_c

The lastterm on the right-handsideofEquation (1.4.1)cancel _/th another term, due to the

pressure-velocity fluctuations correlation, on the right-hand side of the mean total energy

equation, (1.2.7).
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The next term to be modeled in the mean total energy equation, (1.2.7), is

a/a - "xj('rijUi). This is the total work done by viscous forces on the turbulent velocity
fluctuations, and at high Reynolds numbers it is several orders of magnitude smaller than

the viscous work done on the mean velocity field, a/axj(TijUi). Therefore, it is neglected.

The species conservation equations, (1.2.5),_,.contain the most difficult correlations to be

modeled. Besides the fluctuation flux term,U_' n, which is modeled by relating it to the n t h

species' mean mass fraction gradient, there are a number of correlations created by the
.... _ ,, ,,----_,nonlinear species source terms. These correlahons are of the form Y**Y/3,T Yn ..... , etc.

There are few experimental determinations of these correlations which provide insight into

their modeling. Equations (1.2.11) and (_1.2.12) for the mixture enthalpy and the ideal gas

relation also require determination of hnY n and T"Y n, respec,_tively. The modeling approach

taken here is to model the species turbulent flux term, U'iY n, in a manner similar to the

modeling of the turbulent enthalpy flux given by Equation (1.4.5). Therefore

where Cry= C/_/Cy

and is given by

-'_ -1 -~ n

" " = #lj (1.4.8)PUiYn -Cry Pvt _x,
3

and Cy = 0.36. An isotropic version of this model can also be obtained

- _ -1 -~ n

U"Y" - -Sc t -- (1.4.9)
P i n PVt 6ij axj

where Sct = Cry= 0.7.

All other correlations in the species source terms, thermodynamic state equation, and

other auxiliary relations are ignored and only mean thermo-chemical values are used in the

calculation. This "laminar like" treatment of the thermo-chemistry aspect of the problem

drastically reduces the complexity of the problem and in effect reduces all scales affecting

the chemical reaction mechanisms to those decided by mean values. With such

simplification one can consider a complex set of chemical kinetics relations, with many

intermediate species and multiple reaction steps (Ref. 34). However, the exponential form

of the chemical source terms makes them very sensitive to the effect of the neglected

correlations. The modeling of the complete set of governing equation (1.2.4 to 1.2.13) for

multi-species turbulent compressible reacting flowfields with finite rate kinetics chemistry is

now completed. These equations can be solved for premixed flames as well as for diffusion

flames depending on the specified initial and boundary conditions.
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1.5 Nondimensionalization

Coordinate axes and all the flow variables in the modeled governing equations can be

non-dimensionalized with free stream flow properties and geometrical dimensions. Such

nondimensionalization is not required for the numerical solution of the equations; however,

it introduces well known nondimensionalized parameters, such as Reynolds number, into

the equations making it easier to compare geometrically similar flowfields. At least two

thermodynamic properties of the free stream are needed to nondimensionalize the flow

variables. Density and temperature are used here.

If the free stream flow variables at the inflow region are designated by = subscript and

the characteristic geometrical length scale of the problem is given by L, then the coordinate

axes are nondimensionalized by L and time is nondimensionalized by L/a.. The

nondimensionalized flow variables are given as:

l

l

!

U eti P T

P " p-' Ui = a-' P " 2' T = _--, et - --_, h - -_, Y -n n
_ p=a= _ a a

n

c c - D RY- --
n=l W

p v p n K n

c -- , c -- , ]_ = <, D = --, r = --, a -- Rp y=R v y R n D_ r_ y

- v ~ ---u:'u':

_ _ L Tn' vt t q _ IN1 • 3
n p=a -- _ /p ' q = --2' E = 2' and U"U'.' =[ i J N 2

where

2 N _ N

a - },=R T , R - RE (% n¥)_' c = RZ (_ Y ) ¢

_ n=l n P _ n=l nn

C = C -R , y C /C , D = La
v p co === p= v _ =oo

p® and r® are molecular viscosity and conductivity evaluated at free stream temperature

and density.
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Introducing;

/c
p La p= _ = P

-- -- K cp'Re = P. , Sc - , Pr - and Le- p D - - p D

(here Re.SC. = 1 since D® = La.).

The complete modeled and nondimensionalized system of equations is given as

Mass Conservation:

ap + a
(pu_) = o

J

3

Species Conservation:

aY

3 P(Dn6ij+vtSC Gyl_ij)_n ] . _.k(pYn) + _x.[pUjYn - (Sc Re )-1co co , n

3 z

(1.5.1)

n = 1, 2,..., N-1

(1.5.2)

Momentum Conservation:

a a

at (PUi) + _, [pUjUi + 6 ,P - ( + Ttij) ] - pGj-- i3 Tij
3

i- 1, 2, 3

(1.5.3)

Energy Conservation:

a a

_-t(Pet) + G [pUjet + U.P3 - Ui(TiJ + Ttlj)

1 [r6ij+Cp ( - ]aT(Pr--Re--;lly -i) y -11Pr PVtahl_ij a_i

-i aq
-Re.[PV6ij+pvta k _ij }_--_i +

(1.5.4)

N [iPDn6ij+ -i -iZ Re PVt_ h
n=l

aY

I n_ij hn _,']-pUjGj
1
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with the auxiliary relations

N

Z Y = 1
n

n,_l

1 2

pet - oh + _PU i + pq - p

(1.5.5)

(1.5.6)

o jh n - hfn + c (T)dt

To Pn
(1.5.7)

N

h- Z h Y
n n

n-i

p = 0RT

aU i _U. %U I.

_ij " Re21ov _ +_x._ 3

Ttij - P[UiUj]N

(1.5.8)

(1.5.9)

(1.5.10)

(1.5.11)

T t

m ij (1.5.12)

ij pq

For turbulent eddy viscosity type turbulence models the nondimensionalized shear stresses

are given as

[ i j N PVt _ + 3X.1 3 6ij a--_lJ - _ 6ijpq (1.5.13)

where
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or

2

" Re2C q (for k-E model) (1.5 14)?t _ @ _

I

I

I

Vt - Re c AU6 (for Prandtl-Mixing Layer Model) (1.5.15)_m

The set of Equations (1.5.1) to (1.5.12) is independent of the level of turbulence closure

model used for Reynolds stresses and can be solved with the second-order Reynolds stress

model, the two-equation k-_ model, or the zero-equation mixing layer model discussed in

Section 3. This general form of the mean conservation equations allows development of a

numerical solver for the mean flowfield which is independent of the turbulence model used.

The second-order Reynolds stress model provides nondimensionalized turbulent stresses,

required in Equation (1.5.11), directly. The eddy viscosity turbulence models use Equations

(1.5.13) and (1.5.14) or (1.5.15) to provide the Reynolds stresses. If a zero-equation model is

used, then the turbulent kinetic energy should either be related to the dominant turbulent

shear stress algebraically or its appearance be ignored in all of the preceding equations, with
_ij = 6ij.

The normalized k-e equations are given by

8U.

1 1 Ujq_ij %P -IsPq_ij ax, %x Re
] (n-l)c T i _ q

P

-i
- -Re pE

OO

(1.5.16)

3
- Re_ 1 IV6ijP

- 18E aUi
+ _Elvt_ij a-_i ] --C_iP£_iJ G

-i E 1 Uj 8P
Re C 2f£p_£ - CE 4 (n-l)CpT _ij _x I +

(1.5.17)

Re_ 1 CE3 8Ui " %Ui " 2 %Ui

PVVt_j m I_X_Xll 18x--_XlJ - 3PE 8-_i
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The nondimensionalized form of the near wall functions, given in Table 1, remain

unchanged when the nondimensionalized quantities are used. The turbulent Reynolds

number is given by Re t = Re2q2/(v_).

The complete set of constants associated with the k-a turbulence model are given by

Cry= Cg/Cy, Crh = Cg/Ch' Crk = Cg/Cs' Cre = Cg/CE' with Cg = 0.9, Cy = C h = .36, C s = .25,

C E = .2, and those give in Table 1.

The complete two-dimensional expansion of the mean conservation equations and k-a

equations and their respective flux Jacobians are presented in Appendix A.

L

!

1.6 PDF Combustion Closure Model

The complexities of physical phenomena in a turbulent chemically reacting

compressible flow suggest that there is no one method of modeling superior in all

applications. Depending on the nature of the time scales involved in the chemical reaction
and the flowfield, an appropriate approach may be to design models that are best suited to

the particular physical circumstances under consideration. However, ideally one is looking

for a comprehensive approach that would lead to simpler models in extreme cases. A

hybrid stochastic modeling technique is introduced here as a general approach for the

modeling of such problems. This modeling technique couples the time-averaged

compressible flow equations with a probability density function formulation for the
chemical reactions. The advantage of this method is that it treats chemical source terms and

the state equations in a turbulent flowfield consistently, and more accurately, than standard

approaches.

The basic idea behind the hybrid stochastic model is to solve the time- averaged mass,

momentum, and energy conservation equations with standard numerical methods and

obtain the chemical reaction solution from a stochastic model, instead of solving the time-

averaged species conservation equations. This method's requirements can be summarized

as follows:

(a) A PDF model for chemical reactions.

(b) Two-equation or higher order turbulence model for the flowfield.

(c) A coupling between mean flowfield and thermo-chemical variables.

A general PDF transport equation model will provide a detailed analysis of ignition,

flame holding, and blow out and will predict NOX formation (Ref. 11). However,

development of an advanced PDF model, which requires a lot of CPU time for the solution

of the PDF transport equation, should be based on the insight obtained from simpler PDF

models. In this section, an assumed PDF reaction model for supersonic turbulent diffusion
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flames will be developed. This model is a special case of the general hybrid stochastic
model.

1.6.1 Reaction Mechanism

t

I

I

I

I

I

The assumed PDF reaction model developed here is based on the shifting equilibrium

reaction mechanism (Ref. 9). This reaction mechanism requires a very fast rate of chemical

reaction, which results in elimination of chemical source terms and the effect of large
temperature fluctuations on them. In flow regions where it is known that the rate of

reaction is very fast, and mixing controls the reaction process, this model along with an

adequate turbulence model can accurately predict the flowfield. The mixing process and the

transport of all species are represented in terms of the transport of a single conserved scalar.

There are several scalar variables which are conserved in a chemical reaction and can be

used as a basis for describing the mixing in a nonpremixed reacting flowfield. The mass

fraction of a given element is such a variable. A normalized conserved scalar is referred to

as the mixture fraction. To obtain a transport equation for the mixture fraction from the

species transport equations, the assumption of uniform molecular diffusivity is required

(Ref. 9). This assumption is not generally valid, but in turbulent flowfields the mixing done

by turbulent eddies is several orders of magnitude larger than molecular mixing. Therefore,

one can ignore molecular mixing in this context, to justify this assumption.

1.6.2 Laminar Flow Reaction Closure

Before discussing the role of the PDF model in a turbulent reaction, let us first see how

the shifting equilibrium reaction model and the mixture fraction concept help to simplify

the solution of a laminar supersonic combustion problem. With the shifting equilibrium

model, chemical equilibrium is achieved instantly whenever mixing requires a shift in the

composition. This means the reaction takes place instantaneously as soon as reactants come

together in stoichiometric proportions at the atomic level. Thus the composition of the

mixture at a given point at any particular instant of time is assumed to be the same as if the

mixture were isolated and allowed to come to chemical equilibrium. At this local

equilibrium the reaction takes place at stoichiometric proportions. Therefore given density,

p, internal energy, e, mixture fraction, _, and the possible reaction products, one can obtain

temperature, pressure, and species mass fractions using a chemical equilibrium calculation
code such as STANJAN (Ref. 35) or CEC (Ref. 36).

This reaction model eliminates species conservation equations and reduces the set of

transport equations to conservation of mass, momentum, total energy, and mixture fraction.

The solution vector of this set in a two-dimensional case is (p, #u, #v, pe, pC). Given this

solution vector, pressure, temperature, and species mass fractions can be obtained from a

chemical equilibrium calculation. Since the chemical equilibrium calculation has to be

repeated at every point in space and time, it can be very expensive. However, chemical

equilibrium calculations need only be done once to create tables representing pressure,
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temperature, and species mass fractions in terms of density, internal energy, and the

mixture fraction, i.e.,

P = P(p,e,0) (1.6.1a)

T = T(p,e,0) (1.6.1b)

Yi = Yi(p,e'o) (1.6.1c)

These tables can be used during the flowfield calculation to look up thermodynamic

properties. The above functional relationships depend on the specifics of a physical

problem and the maximum and the minimum values that density and internal energy
attain. To illustrate the form of these multi-dimensional functions, an equilibrium reaction

of pure hydrogen at 300 ° K with air at 1200 ° K is considered. Figures 1.1 through 1.3 show

variations of pressure, temperature, and hydrogen mass fraction with respect to normalized

values of mixture fraction and internal energy at a normalized density of one half. Density

and internal energy are normalized by their maximum and minimum values.

1.6.3 Turbulent Flow Reaction Closure

The density-weighted averaged form of the transport equations governing the

behavior of variable density turbulent flows is used to obtain the averaged solution vector

(#, pu, pv, pe t, p_). Thisaveraged solution vector can no longer be directly related to the

thermodynamic results obtained from the chemical equilibrium calculations because

Equations (1.6.1a) to (1.6.1c) are instantaneous, rather than averaged, relations between

pressure, temperature, and species mass fractions and density, internal energy, and mixture
fraction. Thus, to obtain the mean values of pressure, temperature, and species mass

fractions a closure model is required to relate the statistical averages of these

thermodynamic quantities to the statistical mean values of density, internal energy, and

mixture fraction through the chemical equilibrium relations.

Introduction of the joint PDF of the density, internal energy, and mixture fraction can

bridge the gap between the instantaneous values of these three quantities and the mean

values of the other thermodynamic quantities which depend on them. Let g(p,e,O) denote

the joint PDF of density, internal energy, and mixture fraction. Then (Ref. 39)

i

l

I
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- / / /
0 O0

- - pT (p, e, ¢)

PO00

g(p,e,_) dp de d_ (1.6.2a)

g(p,e,_) dp de d_ (1.6.2b)

i _ Go

PO00

g(p,e,#) dp de d# (1.6.2c)

The general form of the joint PDF depends not only on flow conditions but also on

chemical reactions and heat release and varies from point to point in the flowfield.

Theoretically, one can obtain this function from extensive experimental measurements or

from direct solution of its transport equation (Ref. 11 & 37). However, both these methods

are quite complicated and expensive in terms of manpower and computer time. Direct

solution of the joint PDF's transport equation will be discussed in detail in Chapter 4. Here

an attempt is made to represent the joint PDF in terms of known functions of the mean

values of its three variables and the variance of the mixture fraction.

1.6.4 Assumed PDF

The simplest method of developing an assumed form of a joint PDF of three random

variables is to use separation of variables, which is equivalent to statistical independence,

and represent the joint PDF in terms of the product of three independent functions.

However, in a reacting flow p, e, and # are not independent, and it is essential to have a

simple form of the joint PDF that retains the coupling between these variables. Therefore,

the assumed form of the joint PDF should provide for possible single point correlations

between its variables. This means that the assumed joint PDF can not be represented in

terms of three independent functions of the primitive variables p, e, and # (Ref. 38). To

maintain the coupling between the variations of the random variables in the assumed joint

PDF, this function will be expressed in terms of three functions of new primitive variables.

Each of the new variables will be related to the original random variables. Therefore, the

joint PDF can be represented as

g(p,e,0) = fl(P') f2(e') f3(0*) (1.6.3)

At the present time the goal is to come up with the simplest model that satisfies the

above objectives and is consistent with the models used for subsonic diffusion flames. In

subsonic cases the above joint PDF reduces to a single variable PDF for the mixture fraction

(Ref. 9). A clipped Gaussian distribution or a Beta function has been found to adequately

represent the form of the mixture fraction's PDF in subsonic diffusion flames (Ref. 15). This
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requires that #* be chosen to be identical to #. Also, the domain of the joint PDF must be
examined for the feasibility of using a clipped Gaussian or Beta function distribution to

represent f3(O). Figure 1.4 represents an example of the domain of the joint PDF of density
and mixture fraction. Internal energy has been set to a particular value, since four

dimensional geometry can not be presented on a graph. It is noted that the mixture fraction

always varies from zero, at pure oxidizer, to one, at pure fuel. However, density ranges

from a minimum value, Pl(O), to a maximum value, P2(O), for a given value of the mixture

fraction if a given range of pressures is to be covered. The joint PDF is only defined in this

domain. In this figure it is also noted that if an arbitrary path along a fixed value of density

is chosen, the PDF is not defined for the full range of values of the mixture fraction. Known

functions such as clipped Gaussian or the Beta function are not suitable for the

representation of such forms of the mixture fraction PDF. However, there are other possible

paths along which the mixture fraction PDFs are defined for the whole range of the mixture

fraction values, as shown in Figure 1.5. To obtain a domain in which the mixture fraction's

PDF is defined for the full range of the mixture fraction values at any given value of density,

a normalized value of density given by

* P - PI(#) (1.6.4)

P " P2 (#) - Pl (_)

is chosen. Figure 1.6 represents such a domain. Similar normalization of the internal energy

results in transformation of the original joint PDF to the function g(p*,e',O) with the domain

{(p,e,_): O*_p -*l, 0 -- e" *-l, O -_ O -* l}
(1.6.5)

where

e - el(#)
* (1.6.6)

e --
e2 (0) - eI (_)

The new normalized variables are now also dependent on the mixture fraction. Thus,

separation of the joint PDF into three functions of these variables maintains the coupling of

the original variables.

Next, it is assumed that the dependence of the joint PDF on the normalized density and

internal energy can be approximated, to the first order, by Dirac delta functions centered at

the mean of these variables. This approximation is motivated by the fact that the only

known moments related to these random variables are the means of the density and internal

energy provided from solution of the mean flowfield. The Dirac delta function is the only

appropriate choice for the representation of a random variable whose only known moment

is its mean value (Ref. 39). The joint PDF can now be approximated by the following form:

g(p',e',#) = 6(p* - <p'>) 6(e* - <e*>) f3(#)
(1.6.7)

I

!

I

1

I
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The function f3 must be chosen such that

1 e 2 /:)2

J/I
ez Pz

g(p, e, C)) dp de dc) = 1 (1.6.8)

It is also suggested that the mixture fraction PDF, f3(c)), be given in terms of a new function,

f(c)), such that

1

<pC)> J

0

(1.6.9)

I
PDF is given as

where < > are used interchangably with overbars to denote ensemble average value. This

condition is not required and is only used to simplify manipulations and integrations

required for the determination of density-weighted quantities. The final form of the joint

I g* * * 6(p* - <p*>) 6__(e* - <e*>)

(p , e , C)) = [p;_ _i_-_ ] (e2_ _ii(-_]I
(1.6.10)

I <p>

<P >[P2 (c)) - Pl (c)) ] + Pl (c))

I

[: (C))

The only remaining task is to choose an appropriate form for the PDF of the mixture

fraction, f(c)). Both clipped Gaussian and Beta functions can be used. Here the Beta

function form is chosen based on the ease of its application. This function is given as

c)a-i )b-i
_.(4)). (1 - 4)

lc)a-l(l _ o)b-ldc)

O"

(1.6.11)

with
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a - [ - 1] , (l.6.11a)

,,"'T'_

where _),,2is the variance of the mixture fraction.

(1.6.11b)

The Beta function takes a variety of shapes depending on the value of the exponents a

and b, which are dependent on the mean and the variance of the mixture fraction. Given

and 0 ''2, exponents of the Beta function require that the assumed PDF matches at least the

mean and the variance of the real PDF exactly.

The above assumed PDF requires the knowledge of the variance of the mixture

fraction. An equation governing the transport of the mixture fraction variance is used to

obtain its value in the flowfield. This equation will be discussed in more detail in the next

section.

Utilizing the above assumed joint PDF, the mean density and density-weighted mean

internal energy are given as

d# (1.6.12)

1

-1 ] _(#)<p> - .

0 <P >(02 - 011 + 01

- <0><pe> ] [<e*e - - >(e2-el)+el] f(_)d# (1.6.13)

0

which reduces to

where

e = <e*>[e 2 - ell + e I (1.6.13a)

e. (0)
i

I

ei(_) (0) d_ i=1, 2 (i. 6.13b)
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If _v(p, e, _) denotes any thermodynamic quantity, its density-weighted and unweighted
mean values are given as

and

1

I * *= IF(<p >, <e >, _) _f(_) d_ (1.6.14)

0

1

, , <p>= _/(<p >, <e >, _) . f(_) d_ (1.6.15)

0 <P >(P2 - Pl ) + Pl

1.6.5 Mean Thermodynamic Variables

At this point let us briefly review the procedures for obtaining the required mean
values of a thermodynamic variable from the above assumed PDF model:

Step 1. The values of p, e, q, and _..2 are directly obtained from the mean flowfield solution,
i.e., (7, pu, pv, p-_,p_, P0"_.

Step 2. Given _ and _,.2, the mixture fraction PDF,'f(O), is calculated.

Step 3. Given p and e and using the thermodynamic tables obtained from chemical

equilibrium calculations, <e*> and <p'> are obtained from Equations (1.6.12) and
(1.6.13).

Step 4. Thermodynamic tables are interpolated to determine the desired quantity at <p*>
and <e >, i.e. _(<p*>, <e'>, _).

Step 5. Given the above information, Equation (1.6.14) or (1.6.15) is used to obtain the

desired mean of the thermodynamic variable.

1.6.6 Mixture Fraction's Mean and Variance

A transport equation for the mixture fraction can be obtained from the species

transport equations (Ref. 9). The density-averaged form of this equation is given as

(1.6.16)
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Consistent with the turbulence modeling approach used in previous sections, it is assumed

that mixture fraction fluctuations are caused by the turbulent velocity field fluctuations and

are proportional to the gradient of the mean mixture fraction. Assuming that the
characteristic time of the turbulent mixing of scalar quantities is that of the turbulent

velocity field, the following model can be presented for the mixture fraction turbulent flux

term

PU"_" = -Golpvt#ij -- (1.6.17)- i %x.
3

The modeled nondimensionalized mixture fraction transport equation is then given as

O ~ + O P(Dn6ij+ vtSC Gy #ij)_-_i j = 0 (1.6.18)___(p_) _.[pUj_ - (SeRe)-I -i- O_

3

where G$ = Cp/C$, C o = 0.36,and D issome average uniform molecular diffusivityin the

flowfield.

An exact transport equation for the mixture fraction variance can be simply obtained

from the instantaneous mixture fraction and is given by

a .~_,,2 0 I___(p_ ) + pUj#" + pU_#" - -2p U"O"
ax 9

2pD 0x i 0x i + pD 0x i J

(1.6.19)

There are three terms in this equation that require modeling. A r_._ient transport

el has alread been _:iven for the mixture fraction turbulent flux, U'_O", by E_nmod y ...... 2
(1.6.17). Recognizing the diffusive nature of the triple product correlatton term, Ui# , a

similar model can be developed for this term by relating it to the gradient of the mixture

fraction variance (Ref. 40). This model is given by

04_-___22 (1.6.20)

The last term to be modeled is the second term on the right-hand side of Equation (1.6.19).

This term is positive definite and is caused by the molecular diffusive action of the fluid.

The negative sign in front of this term ensures that it only acts as a sink term. At high

Reynolds numbers the molecular effects are only significant at very small scales of the
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motion, and this term can be interpreted as the rate of dissipation of the turbulent scalar

fluctuations. A transport equation can be derived for this quantity by manipulating the

instantaneous mixture fraction equation (Ref. 40). However, the modeling of this equation

for chemically reacting flows is rather complex because of lack of insight into the individual

terms of such equations (Ref. 41). Here a simpler approach is used to relate this term to the

rate of dissipation of the turbulent kinetic energy.

the rate of dissipation of mixture fraction fluctuations by _, a turbulentDenoting
scalar field time scale can be defined as

t, . .0yl o
ax i O-_il

(1.6.21)

The turbulent velocity field time scale (Ref. 17) is given by

tt ,, q/e (1.6.22)

If the scalar fluctuations are caused by velocity field turbulent fluctuations, then the

turbulent scalar field time scale can be directly related to the turbulent velocity field time

scale, i.e.,

tt = --_Cgt¢ (1.6.23)

Experiments (Ref. 42) show that the constant Cg can vary between 0.6 to 2.4 depending on

the flowfield. Here value of unity is assigned to Cg. A model for the dissipation rate of the
mixture fraction fluctuations can now be given as

~

¢)$" aS" _ _ _: $,,2
pD ax. ax. 2 g _

i l q

(1.6.24)

Substituting the modeled terms in Equation (1.6.19) and nondimensionalizing it, the

following equation is obtained for the mixture fraction variance transport equation

a + a p (D6ij+ ) a$"2l
._.(p$,,2"_1}- ) G[pUj$,,'"2"" - (ScoRe) -1 vtScj;l_ij 3-_iJ

+
- -i _.,,22Re-1

¢$1pvt#ij 0x i Oxj Re C_q

(1.6.25)

where rr, = C_/C_, C# = 0.36, and Cg = 1.0.
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Equations (1.6.18) and (1.6.25) provide distribution of the mean and the variance of the

mixture fraction throughout the flowfield and are solved along with conservation equations

for the mass, momentum, and total energy to provide necessary information to determine

all mean thermodynamic variables and chemical reaction products from the PDF

combustion model. Complete expansion of the governing equations for the PDF model in

two dimensions and their flux Jacobians are given in Appendix A. The dependence of the

mean pressure on the mean value and the variance of the mixture fraction are also discussed

in Appendix A in relation to the determination of the flux Jacobians.

This concludes the discussion of the governing equations and modeling approaches

used in this work. Two methods for the calculation of compressible chemically reacting

turbulent flows were presented. The first method is based on the solution of the mass-

averaged Navier-Stokes equations along with chemical species transport equations with

appropriate chemical reaction source terms. The second method is based on the solution of

the mass-averaged Navier-Stokes equations along with mixture fraction's mean and

variance equations and a PDF model for the determination of the mean thermodynamic

variable and chemical reaction products. A comprehensive discussion of turbulence

modeling for turbulent correlation terms appearing in the governing equations was given.

Turbulence models considered included a second-order Reynolds stress model, a two-

equation eddy viscosity model, and a zero-equation eddy viscosity model. In the next

chapter, application of the above models to several geometrically different flowfields will be
considered.

I
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CHAPTER 2. NUMERICAL SOLUTIONS AND RESULTS

The major objectives of tasks one and two of this contract were to develop an assumed

PDF chemical reaction model along with an appropriate turbulence model for compressible,

turbulent diffusion flames. Diffusion flames are created when a stream of fuel is injected

into a stream of oxidizer at a different temperature and allowed to mix and react.

Accordingly, there are very large gradients in the values of all flow and thermodynamic

variables at the surfaces where the two streams meet. Physically the turbulent mixing and

molecular transport properties are responsible for smoothing of these very sharp flow

gradients and mixing the two streams to a stoichiometric level where chemical reaction can
take place.

This class of flames is distinguished from premixed flames by their fast rate of reaction,

i.e., the reaction between the fuel and oxidizer takes place as soon as they are mixed, at the

molecular level, to a stoichiometric proportion. Reaction of hydrogen fuel with a hot air

stream is an example of such diffusion flames. On the contrary, in premixed flames, the rate

of chemical reaction is so low that the flowfield has ample time to completely mix before

chemical reaction takes place and the flowfield is relatively homogeneous. This means that

in premixed flames the chemical kinetic rates control the reaction and in diffusion flames it

is the rate of turbulent mixing that is the deciding factor for the level of chemical reaction.

To be able to predict the behavior of diffusion flame flowfields, an accurate turbulence

model along with an accurate numerical scheme, which can resolve regions of very sharp

gradients, are required. It was stated in the contract that the PDF reaction model and the

turbulence models developed here, under tasks one and two, should be implemented in the

RPLUS computer program. Therefore, the choice of numerical flow solver was limited to

the RPLUS code. The version of RPLUS code, which was supplied by the NASA Lewis'

Computational Fluid Dynamics Branch, was a research code at its early developmental

stages. The code was designed for the solution of uniform flow of a premixed mixture of

hydrogen and air that ignited as it passed through an inclined shock created by a ten degree
ramp.

It is the conclusion of the present work that the solution algorithm in the original

RPLUS code was not adequate for the solution of diffusion flame flowfields. Therefore,

besides the necessary changes to include a PDF combustion model and turbulence models

into the code, there was a major effort to enable the code to accurately solve for flowfields

with large velocity and scalar gradients in the direction normal to the direction of the mean

flow. The results given in this chapter are organized in a format which highlights the

difficulties encountered in application of this computer program to a variety of free and

wall-bounded shear flows and remedies provided for specific cases. The sequence of case

studies begins with the least complex case of shear layers and advances to cases with more

complexities introduced by large temperature gradients, species gradients, and chemical

reactions. Converged solutions are compared with appropriate experimental results.
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Before presenting the results of the case studies, the original RPLUS code and its

characteristics will be discussed. A summary of major modifications to the original code

will be given and the necessity of each modification will be briefly discussed. Some of the

modifications, related to the turbulence modeling and the PDF combustion model, will be

discussed in more detail later.

It must be pointed out that modifications and improvements to the RPLUS code were

done in such a way that the original capabilities and characteristics of the code were

preserved. Specification of appropriate input parameters causes activation of turbulence

models, combustion models, and geometrical options which were not available in the

original version of the code. Even though this is a very time consuming method of code

development, it provides a self-consistent flow solver which can easily be used for a variety

of flowfields.

2.1 RPLUS Program

The original RPLUS Computer Program (Ref. 34) employed the fully time implicit,

finite volume, lower-upper, symmetric, successive overrelaxation (LU-SSOR) scheme of

Jameson and Yoon (Ref. 43) to solve the coupled two-dimensional Navier-Stokes and

species transport equations. Most numerical techniques used to solve the set of equations

governing chemical reacting flows employ time implicit schemes and require the inversion

of bounded block matrices and become exceedingly expensive when the chemical system

involves a large number of species. The LU-SSOR scheme has the advantage that it requires

only scalar diagonal inversion for the flow equations (continuity, momentum, and energy

equations) and diagonal block inversion for the species equations. The scalar inversion of

the flow equations and the block inversion of species equations are decoupled and take

place in two separate steps. The LU-SSOR scheme has the advantage of a fast convergence

rate while requiring an operational count similar to that of an explicit scheme and hence is

particularly attractive for reacting flows with large chemical systems. A brief explanation of

this method and its advantages are given below.

2.1.1 LU Scheme

The derivation of the LU scheme will be presented for the Euler equations. The final

formulation for the Navier-Stokes equations will be given at the end of the derivation.

Consider the equation

aQ + aF aG S (2.1.1)+ "

A prototype implicit scheme can be formulated as

6Q = -/3at {DxF(Q n+l) + DyG(Q n+l) - sn+l} " (1 -/DAt{DxF(Q n) + DyG(Q n) - Sn}
(2.1.2)
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where6Q = Qn+l _ Qn, and D x and Dy are difference operators that approximate "_x and _y,
and/3 is a positive number between 0 and 1. Letting the Jacobian matrices be represented by

^ aF ^ _G aS

A " _, B - _, and H - 0--_

the scheme can be linearized by setting

F(Q n+]) = F(Q n) + A 6Q + 0(I I 6Q I I )2

G(Q n+l) = G(Q n) +_36Q + 0(I I 6Q I i) 2

S(Q n+l)=S(Q n)+H6Q+0(I I 6Q I I)2

and dropping terms of second or higher order. This yields

A

{I +/3at(DxA + DyB - H)}6Q + at R = 0 (2.1.3)

where

R = DxF(Q n) + DyG(Q n) - Sn

Transforming from the Cartesian coordinate system (x,y) to generalized curvilinear

coordinate system (_,r/) the above equation can be written as

where

{I + pAt(DcA + D_B - H)} 6Q + at R = 0 (2.1.4)

A A A

A=¢x A+¢yB B=0x A+r/yB

and Cx, Cy, r/x, and 0y are transformation matrices. Next the Jacobian matrices A and B are
given as

where

A=A÷+A" and B=B++B -

A += -_(A + VAI), A'= I(A- VAI)

B+ = -_(B + VBI) , B" = -_(B - VBI)

VA=rmax(I,_AI) , VB=rmax(llBI)
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Aa and '_Bare eigenvalues of Jacobian matrices A and B, and _cis a constant greater than or

equal to one. Equation (2.1.4) can be written as

[I +/3At(v A + VB)I] 6Q + _At{D_[(A + + A')6Q] + Dn[(B + + B-)6Q] -
(2.1.5)

(A + - A" + B+ - B- + H) 6Q} = -At R

Upwind differencing is used based on the sign of the Jacobian matrix, that is,

D_[(A + + A-)6Q] = D_(A+6Q) + D_(A'6Q) (2.1.6)

D_[(B + + B-)6Q] = D_(B+6Q) + D_(B-6Q) (2.1.7)

Let

g-6Q -" D_(A+6Q) + D_(B+6Q) - A+6Q - B+6Q - H 6Q

g+6Q = D_(A'6Q) + D_(B-6Q) + A'6Q + B'6Q

a a 1 + _At(v A + v B)

Then Equation (2.1.5) can be written as

[I + _aAt(W" + _¢+)]6Q = - a..iR (2.1.8)

This equation can be factorized to

[(I + _ AtK) (I + _a_t_¢+)] 6Q = - _---LR (2.1.9)

Equation (2.1.9) is in LU factorized form and can be solved as

[(I + _aAtg')16Q* =- _-3-R (2.1.10a)

[(I + _ at_+)16Q = 6Q* (2.1.10b)

At each level of solution either upwind or downwind operations are performed.

For the Navier-Stokes equations, F and G on the right-hand side of the Equation (2.1.9)

can be replaced by F-F v and G-G v, when Fv and G v stand for viscous fluxes. For fully

implicit formulation,/3 = 1, at the limit of large At, Equation (2.1.9) can be reduced to the

following form:

[DIAGi,j_ A+.I,j _ B+,j.1][(VA + vB)i + A._+I,j + Bi,j+I]6 Q = -(v A + v B) R (2.1.11)
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whereDIAGi,j = [(v A + vB)I - H]i,j are (K + 3) x (K + 3) blocks in the diagonal of the matrix

operator. (There are K-1 species and 4 Navier-Stokes equations.)

It is important to note that for nonreacting flows (S=0 and H=0, in Equation (2.1.11))
the present numerical model eliminates the need for banded block matrix inversions

without using the diagonalization procedure. In fact, with forward (for the first operator in

Equation (2.1.11)) and backward (for the second operator) sweeps in the diagonal directions

(indices i,j increasing or decreasing simultaneously), only scalar diagonal inversions are

needed to solve Equation (2.1.11) for nonreacting flow problems. For reacting flows due to

the presence of the source Jacobian H, the first operator on the left-hand side of Equation

(2.1.11) now requires block diagonal inversions. However, since in the present formulation

the flow equations (continuity, momentum, and energy equations) have no source terms,

the first four rows of the diagonal block (DIAG) of this operator have nonzero terms only in

the diagonal. As a result, the first operator of Equation (2.1.11) can be inverted in essentially

two separated steps: the scalar diagonal inversion for the flow equation and the block

diagonal inversion for the species equations.

2.1.2 Finite Volume Discretization and Artificial Dissipation

Approximating the integral form of the governing equations, a finite-volume space

discretization has been developed for the right-hand side of the Equation (2.1.11). The use

of a finite-volume method for space discretization allows one to handle arbitrary geometries

and help avoid problems with metric singularities that are usually associated with finite-

difference methods. The scheme reduces to a central-difference scheme on a Cartesian grid

and is second-order accurate in space, provided the mesh is smooth enough.

It is important to point out here that the experience gained by the use of several

different kinds of grids suggests that the RPLUS code is very sensitive to grid spacing and

the gradual stretching of the grid cells. The stretching must be such that the change in the

sides of adjacent cells in each direction would not be more than ten percent. This may be

due to the space discretization method used for the viscous flux terms on the right-hand

side of Equation (2.1.11). This method is not exactly consistent with the finite-volume

approach for nonuniform meshes. Investigation of this problem was outside the scope of

this work and, due to time limitations, it was not pursued.

Using a central difference scheme for calculating flows with discontinuities or very

sharp gradients typically produces flowfield oscillations in the neighborhood of

discontinuity. To suppress the tendency for decoupling between odd and even points and

to prevent nonphysical overshoots near regions of very sharp gradient, artificial dissipation

models are added to the differenced equations. The original RPLUS code employed a

nonlinear mixed explicit second and fourth order dissipation model with isotropic

coefficients. To illustrate this dissipation model the numerical balance of the inviscid flux of

each cell is written as
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(Fi+,,2, j - Fi_,/2,j + Gi,j+_,2 - Gi, j_,/_) - (di+1/2,j- di_,, ' ,j + di,j+,,2 - di,j_,,2)
(2.1.12)

where d is the dissipation flux. For the sake of simplicity di+l/2, j is denoted by di+,/2, then

di+,12 = _,+'/2_'_2) (Qi+l - Qi-1) - _,+,12_'(4) (Qi+2 - 3Qi-1 + 3Qi - Qi-1) (2.1.13)

The third order terms are due to fourth order differences and provide for high frequency

background noise damping. The first order terms are due to second order differences and

are only used near shock waves activated by a pressure jump sensor defined by

IPi+ 1 - 2P i + Pi_l I

Ti . (2.1.14)
IPi+ 1 + 2P i + Pi_l I

where P is the pressure. The coefficient of the first order terms is proportional to the

pressure jump sensor through the following relation

6 (2) -- r 2 2It(A) + r(B) ] max(Ti+2, T i, Ti_ 1)i+I/2 i+I12 i+I12 Ti+l '
(2.1.15)

where r(A) and r(B) are the spectral radii of Jacobian matrices. The coefficient of the third

order terms is switched off by the pressure sensor and is given as

. [(4) max 0 r4 1 Jr(A) + r ] -i+I/2 , _ i+112 (B) i+ii2 i+II_
(2 .i.16)

In the 1]direction the index i is replaced with j in Equations (2.1.13) to (2.1.16).

The use of spectral radii of both Jacobian matrices A and B in the scaling factors results

in an isotropic smoothing. This means that even if the spectral radius of the A Jacobian

matrix is small, the artificial dissipation in the _ direction may be large due to a large value

of the spectral radius of the B Jacobian matrix. In order to reduce the amount of unwanted

dissipation, especially in the direction normal to the body surfaces inside boundary layers,

an anisotropic dissipation model was added to the present version of RPLUS code. This

model has the same structure as the original model, discussed above, except for the scaling

factor. In the _ direction Equations (2.1.15) and (2.1.16) are replaced by

¢_2 ) r 2 r(A)i+,/2 max (Ti+ 2, Ti+1, T i, Ti_1)1+112 =
(2.1.17)

_(2 )
E-(4) = max(0, K4 r(A)i+i/2 - _1+1/2p

1+1/2

(2.1.18)

In the r/direction, the index i is replaced with j and the spectral radius of the B Jacobian

matrix, r(B), is used. This directional artificial dissipation model produced better results

than the original model, as shown in the next section. However, it was still incapable of

providing an overshoot free solution for nonreacting supersonic mixing layers with large
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temperaturegradient. This madethe useof a total variation diminishing (TVD) scheme

imperative.

A survey of the literature indicates that even though TVD schemes are well developed

for single species nonreacting flowfields, the development for multi-species reacting flows

with large source terms is still a topic of ongoing research (Ref. 45, 46, and 47). Therefore, it

was decided that since the LU-SSOR scheme decouples the solution of the Navier-Stokes

equations (continuity, momentum, and energy) from the solution of the rest of the scalar

(species) equations, it is possible to use a TVD scheme for the first four components of the

solution vector, i.e, p, pu, pv, and pe t, and use a directional second and fourth order

artificial dissipation model for the scalar (species) equations as discussed above. The flux

difference split dissipation model, which is based on the concept of Roe's characteristic-

based scheme, is used here (Ref. 45). This model creates characteristic fields corresponding

to different wave speeds. The dissipation flux is then given as

di+,/2 IAi+,/2 t !+i/2= _Ti+,,_ T_"I (Qi+l - Qi ) (2.1.19)

where T and T "1 are similarity transformation matrices and A is a diagonal matrix whose

elements are eigenvalues of the flux Jacobian matrix A. In the r/direction j replaces i and

corresponding transformation and eigenvector matrices for the matrix B are used.

The present version of the RPLUS code provides the option of using either a TVD

model or a directional explicit second and fourth order dissipation model for treatment of

overshoots in profiles of p, pu, pv, and pe t. The scalar equations, which are the species

equations for the finite rate chemistry closure model and the mean and the variance of the

mixture fraction for the PDF closure model, are still treated with a directional second and

fourth order dissipation model. The solutions of k and _ equations are also treated with a

directional second and fourth order dissipation model. The use of the second and fourth

order dissipation model for the scalar equations and the k-_ equations is the biggest

obstacle in obtaining converged and physical solutions for the diffusion flame reacting

mixing layer and ramp flows with large ramp angles.

2.1.3 Turbulence Models

The algebraic eddy viscosity turbulence model of Baldwin-Lomax (Ref. 33) with

constant turbulent Prandtl and Schmidt numbers (Pr t = Sc t = 0.9) was used to account for

turbulence in wall-bounded flows in the original version of the RPLUS code. This is a zero-

equation turbulence model and only captures the increase of flow diffusivities due to

turbulent mixing. Therefore, except for the modified diffusion coefficients, the governing

equations were identical to their laminar counterpart. On the other hand, the Baldwin-

Lomax model was developed for wall-bounded flows and is not applicable to free shear

layers, such as mixing layers, jets, and wakes. Therefore, a zero-equation Prandtl mixing

model (see Chapter 1) was added to the RPLUS code to broaden its range of applicability to

different flow regimes at the zero-equation level of turbulence modeling. Implementation of
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this model did not require any change in the structure of the code. A subroutine was added

to provide turbulent eddy viscosity for free shear layers. Depending on the number of solid

boundaries at the top and bottom of the domain of solution (zero, one, or two), an

appropriate subroutine is called to provide the turbulent eddy viscosity.

The implementation of the k-_ model into the RPLUS code involved several major

changes. The first step was to solve for the transport equations of the k and e. These

equations are coupled together and are solved independent of the mean flow equations at
each solution iteration. After the solution of the mean flow variables a call is made to the

master k-_ subroutine which provides turbulent Reynolds stresses, kinetic energy, eddy

viscosity, and time scale for use in the mean flow equations at the next iteration. To solve

the k and _ transport equations, the implicit, finite volume LU-SSOR scheme was used.

However, for the sake of clarity, subroutines exclusive to the k-_ equations were developed

for this purpose.

The second step was to include the appearance of the turbulent kinetic energy,

Reynolds stresses, and nonisentropic turbulent eddy viscosity into the mean flow governing

equations. It can be seen from the mean turbulent flow equations presented in section five

of chapter one and in Appendix A.1, that the state equation, inviscid and viscous flux

vectors and their Jacobians are all effected by these turbulent quantities. Therefore, the

turbulence effects are fully felt by all the flow and thermodynamic mean variables. All these

changes are fully implemented in the present version of the RPLUS code. Unlike zero-

equation models, k-e model is a universal model and can be applied to any flowfield with or

without solid boundaries, provided appropriate boundary conditions are used. Near wall

correction terms for k and _ equations are automatically set to zero for free shear layers

with no solid walls.

2.1.4 Chemical Reaction Models

The original RPLUS computer program was equipped with a nine-species, eighteen-

step chemistry model for hydrogen-air reactions (Ref. 48). The species included H 2, 0 2, OH,

H20, H, O, HO 2, H20 2, and N 2. The molecular properties, such as specific heat, thermal

conductivity, and viscosity of each species were determined by fourth order polynomials of

temperature. The specific heat of the gas mixture was obtained by mass concentration

weighting of each species. The thermal conductivity and viscosity of the mixture were

calculated using Wilke's mixing rule (Ref. 49). The binary mass diffusivity between two

species was obtained using the Chapman-Enskog theory in conjunction with the Lennard-

Jones Intermolecular Potential Functions (Ref. 49). The diffusion of a species in the gas

mixture was approximated by Fick's Law (Ref. 50), treating each species and its

surrounding gas as a binary gas mixture. All these features are preserved in the present

version of the RPLUS code.

The sum of mass fractions of all species at any point in time and space should add up

to unity. This equality reduces the number of species equations to be solved by one.
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Therefore, a nine species finite rate chemistry model requires the solution of only eight

species transport equations. This brings the total number of equations to be solved, in a

two-dimensional geometry, to twelve. The original RPLUS code automatically solved for

twelve transport equations regardless of number of species actually present in the mixture

and the presence of any chemical reaction. After the determination of the twelve

component solution vector, the code proceeded to calculate the mixtures' mean

temperature, pressure, speed of sound, and species' enthalpy and molecular properties.

The assumed PDF combustion model requires the solution of transport equations of the

mean and variance of the mixture fraction, in addition to the mean flow equations

(continuity, momentum, and energy). Hence, it requires the solution of only six transport

equations in a two-dimensional geometry. After the determination of the six-component
solution vector, the present version of the RPLUS code proceeds to calculate the reaction's

mean species mass fraction, temperature, pressure, and density, by integrating the Beta

function PDF, over appropriate equilibrium reaction thermodynamic tables, for each of the

above thermodynamic variables. As a consistency check, the mean density is recalculated

from the table integration method and compared with the mean density given by the

solution vector. These two values of the mean density, obtained from different approaches,

must be equal within a small error tolerance. If this consistency check is not verified the

calculation stops with an error message.

The determination of the mean thermodynamic variables, after the solution vector

determination for a given chemical reaction model, is properly channeled to an appropriate
set of subroutines depending on the chemical reaction model used. A number of new

subroutines were added to the program to deal with determination of the mean

thermochemical variables in the PDF reaction model case. These subroutines are

independent of the originally existing subroutines and are only called upon if the PDF

combustion model is chosen by specification of an appropriate parameter in the input file.

Therefore, except for the use of the main solver subroutines with a reduced solution vector

size, there is not much overlap between the solution procedures for the two chemical
reaction models.

The main solver subroutines in the R.PLUS code have been modified such that it is now
capable of solving:

(a) Four Navier-Stokes equations in the case of uniform species composition,
nonreacting flowfields.

(b) Four Navier-Stokes equations plus mixture fraction mean and variance

equations in the case of PDF model hydrogen/air diffusion flame.

(c) Four Navier-Stokes equations plus eight species equations in the case of

nonreacting flows with nonuniform species composition, or diffusion or

premixed reaction between hydrogen and air.
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These modifications were implemented by changing the solution vector size and

modifying the calculation logic of the inviscid and viscous fluxes and their Jacobians. Care

was taken in implementing these changes to avoid degrading the code's vectorization

properties by not introducing any IF statement in any of the main solvers' DO loops.

2.1.5 Boundary and Initial Conditions

The original RPLUS code was designed for single feed premixed flows with uniform

velocity, temperature, pressure, and chemical composition across the inflow plane. There

was no provision for parallel injection of any kind of fluid into the flowfield. Solid

boundaries were used at the top and the bottom of the flowfield. The uniform inflow

velocity profile combined with the no slip boundary condition on solid boundaries created

leading edge shocks at the top and bottom of the inflow region. Even though these

conditions were all valid, they were not appropriate for free and wall-bounded diffusion

flame cases under consideration.

In order to accommodate a variety of flow conditions the RPLUS program was

changed to allow for the following conditions:

(a) Two parallel streams with different properties at the inflow boundary. In

this case Mach number, temperature, static pressure, and species mass

fraction of each stream is read in from the input file. Pressures at two

streams are usually matched. The inflow species composition at each

stream can be made up of one or a combination of the following species;

oxygen, nitrogen, hydrogen, and/or water. There is a symmetry plane at
the bottom boundary and freestream boundary conditions at the top

boundary. Both inflow and outflow streams are completely supersonic. To

reduce sharp discontinuities at inflow regions between the two incoming

streams an error function smoothing can be used for the streamwise

component of the velocity, temperature, and species mass fractions.

Smoothed values along with uniform static pressure are used to determine

density and total internal energy. This smoothing corresponds to

consideration of a mixing layer downstream of its splitter plate.

(b) Same as the above case except each stream is assumed to be on one side of a

splitter plate. The inflow streamwise velocity profiles on each side of the

splitter plate are calculated using the 1/7 power law, given the supersonic

boundary layer thickness on each side of the splitter plate. Next,

temperature, density, and total internal energy are calculated assuming

constant static pressure and total enthalpy. This inflow specification

corresponds to consideration of boundary layers just upstream of the •

splitter plate tip.
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In both above cases, turbulent kinetic energy and its dissipation rate at the inflow plane

are calculated using the eddy viscosity concept, the streamwise velocity inflow profile, and

a multiple of the molecular viscosity.

(c) Uniform species composition with supersonic boundary layer profile for

velocity on an adiabatic wall at the bottom boundary. Here the flow

Reynolds number at the inflow plane is used to obtain the velocity profile.

Assumption of constant static pressure and total enthalpy provides

temperature, density, and total internal energy. Turbulent kinetic energy

and its dissipation rate at the inflow plane are obtained using the law of the

wall for compressible boundary layers.

(d) Combination of cases (a) and (c) for wall jets.

(e) The original uniform premixed inflow profiles. For uniform premixed cases

specification of the equivalence ratio with a value greater than 1075

overrides species compositions' input values. Species mass fractions are

then calculated in the program and set uniformly across the inflow region.

(f) For diffusion flame cases with the PDF formulation, the mean mixture

fraction is set to one at the fuel inflow and zero at the oxidizer inflow. The

mixture fraction variance is set to zero at the inflow.

In general, inflow streams are always supersonic; therefore, upstream boundary

conditions are provided by specifying the velocity, temperature, static pressure, and species

mass fractions as discussed above. At the supersonic outflow boundary, the dependent

variables are extrapolated from the interior. However, for wall-bounded flows, the static

pressure at the outflow boundary is specified for grid points inside the wall boundary layers

where the flow is subsonic. Along solid walls, no slip boundary conditions are specified

and the wall is assumed to be adiabatic. The normal derivatives of pressure and species

mass fractions are also assumed to be zero. Along a plane of symmetry, the normal

derivatives of all the dependent variables are zero, except for the v component of velocity,

which is set to zero. The turbulent kinetic energy and normal derivatives of its rate of

dissipation are set to zero along solid boundaries. In all cases, the flowfield variables are
initialized to their inflow values.

2.2 Supersonic Free Shear Layers

This section is devoted to two-dimensional, supersonic free shear layers with large

streamwise velocity, temperature, and species gradients at the inflow plane. The gases used

are air, with 24.1% oxygen mass and 75.9% nitrogen mass, in the temperature range of

300 ° K to 1200 oK, and different mixtures of hydrogen and nitrogen in the temperature

range of 300 ° K to 450 ° K. Considering the mixing layer geometry shown in Figure 2.1, one

can generally define the velocity ratio, r, between the two streams as the freestream velocity
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of the slower moving stream divided by the freestream velocity of the faster moving stream.

The density ratio, s, is defined as the freestream density of the slower moving stream

divided by the freestream density of the faster moving stream. Mixing layer convective

Mach numbers with respect to each stream are defined as (Ref. 31)

uI - uc

Mc I - al (2.2.1a)

and

u - u2C

MC2 = a2 (2.2.1b)

where u 1 and a 1 are freestream velocity and speed of sound propogation in the faster

moving stream. Similarly u 2 and a 2 are freestream velocity and speed of sound in the

slower moving stream, u c is the speed of convection of the large structure eddies in the

mixing layer and is defined as

UC 1 + rs I/2
I I

Ul 1 + sIt2

(2.2.2)

with r = u2/u 1 and s = p2/pv If the ratio of specific heats in the two streams are equal, i.e,

F1 = )'2, then

Mcl - Mc2 - Mc (2.2.2)

and

U
C

a2u I + alu 2
. (2.2.4)

aI + a2

In all cases considered, the inflow velocities are all supersonic and static pressure is

matched between the two incoming streams and set to 1.013 x 105 Nt/m 2. Depending on

the velocity and temperature ratios and the convective Mach number between the two

layers the incoming mixing layer may remain a mixing layer in the solution domain, or it

may develop into a two-dimensional jet or wake. The flow exits the outflow boundary with

supersonic speed. Therefore, all dependent variables at this plane are extrapolated from the

interior points. The symmetry boundary condition is used at the bottom boundary, and

nonreflecting boundary conditions are used at the top boundary. The numerical grid used

for most of these flows is an 80 x 55 clustered grid, with clustering around the splitter plate
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location in the normal direction and near the inflow plane in the longitudinal direction

(Figure 2.2). The domain dimensions are normalized to a height of 1.0 and length of 4.2
with the height of the inner stream channel set to 0.1

2.2.1 Solution Overshoots and Artificial Numerical Dissipation

To show the overshoots, caused by the use of the isotropic second and fourth order

artificial dissipation model used in the original RPLUS code, the simplest possible mixing

layers are considered here. In the first case, a mixing layer between two airstreams is

considered. The top layer's Mach number is 1.86 at the freestream temperature of 450 oK.

The bottom layer's Mach number is 1.46 at the freestream temperature of 450 oK. Since the

two streams are at the same temperature and static pressure, they have the same density
and speed of sound propagation. Therefore,

P2 u2 M 2 M I-M 2
s --- I, r - .... 0.785, and M - - 0.2

Pl uI M1 c 2

Three different calculations were performed, and in each case, three thousand

iterations were made on a CRAY Y-MP computer. In the first calculation, the isotropic

artificial dissipation model, which was used in the original version of the RPLUS code, was

used. The dissipation coefficients used for this case were those recommended by the

original RPLUS code, i.e., if2 = 4 and r 4 = _F (see Equations (2.1.15) and (2.1.16)). In the

second calculation, the directional artificial dissipation model was used with the same

dissipation coefficients as above. In the third case, the TVD scheme was used.

To highlight the effect of the artificial dissipation models and eliminate any other

sources of instability and numerical overshoots, no turbulence model was used, but instead,

the molecular viscosity of the streams was increased by a factor of one hundred. The

convergence history and the CPU time for all three cases are shown in Figure 2.3. All three

cases have similar convergence curves and are fully converged. The profiles of the

streamwise velocity components, u, along the normal direction, y, at several downstream

stations are displayed in Figures 2.4a, 2.4b, and 2.4c. There are large overshoots and

undershoots associated with the artificial dissipation models, as can be seen in Figures 2.4a

and 2.4b. These overshoots are present at every downstream location and do not go away

as one moves away from the inflow plane. Instead they have a wavelike behavior as they

move downstream, the isotropic model creates much larger overshoots and slightly more

spreading of the mixing layer. The TVD scheme not only provides an overshoot-free

solution, it also creates the least amount of numerical diffusion as can be seen by visual

inspection of the level of spreading of the mixing layer in these three cases. The only

drawback of the TVD scheme is the almost doubling of the computational time required for

the calculation of the flowfield, as noted in Figure 2.3. This is a small price to pay for an
accurate solution.
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Therewasa suspicionthat thereductionof thevery largegradientof the streamwise
velocity componentat the inflow plane may help reduce the large overshoots observed in

cases where second and fourth order artificial dissipation models were being used. To test

this idea an error function was used to smooth the streamwise velocity component and

reduce its gradient at the inflow plane. The solution obtained for the mixing layer with a

smoothed inflow velocity and utilizing an isotropic artificial dissipation model is presented

in Figure 2.4d. The overshoots are still present in a major portion of the solution field and

the inflow smoothing has just helped to reduce the overshoots occurring near the inflow

plane. The solution convergence history is very similar to the previous cases shown in

Figure 2.3 and is not shown here.

Having established the presence of the overshoots in the absence of any turbulence

models, it was important to observe the effect of different turbulence models on the flow

solution and the related solution overshoots. Therefore, the elevated molecular viscosity

was reduced to its actual value and a Prandtl mixing turbulence model, given by Equation

(1.3.19), was used in the calculation of the same mixing layer with all three methods of

numerical dissipation. The Prandtl mixing turbulence model used here was slightly

modified to suit the unsmoothed inflow streamwise velocity profile in the following three

test calculations. The mixing layer thickness, 6, used in this turbulence model, was

redefined as the distance between points where the streamwise velocity differs from the

freestream velocity by one percent (insteady of five percent) of the maximum velocity

difference across the layer. This modification provides a slightly larger turbulent viscosity

and creates a more rapid spreading of the mixing layer. Since the following three test cases

are only used to show the effect of the artificial numerical dissipation schemes and not the

accuracy of this turbulence model, the above modification is unimportant. In latter

applications of the Prandtl mixing turbulence model, the original definition of 6, given in

Section 1.3.3, is always used.

Figures 2.5a, 2.5b, and 2.5c show the streamwise velocity profiles obtained from these

calculations. These results display the same trend as before, with the isotropic artificial

dissipation model creating the largest overshoots and the TVD scheme producing no
observable overshoots. The use of the Prandtl mixing turbulence model has two notable

effects, the first one is the disappearance of the wave-like behavior of the overshoots.

Therefore, the overshoot magnitude is decreasing as one moves toward the outflow plane

region, such that there is very little overshoot at downstream stations near the outflow

plane. The second effect is the lack of solution convergence for cases which do not use the

TVD scheme. Figure 2.6a shows the convergence history of L 2 density residual for the

isotropic artificial dissipation model. Large residual oscillations appear after 1,500

iterations. The convergence history of the directional artificial dissipation model is also

oscillatory and very similar to the above case; large residual oscillations appear after about

1,500 iterations. The TVD scheme produces a properly convergent solution as shown by

Figure 2.6b.
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Based on these results, the TVD scheme was chosen over the second and fourth order

artificial dissipation models for the rest of the calculations. However, since the TVD scheme

is only applied to the continuity, momentum, and energy equations a second and fourth

order artificial dissipation model still needs to be used for the scalar transport equations.
Therefore, there was an effort to develop methods which would minimize the level of

overshoots caused by the second and fourth order smoothing model. The usual method of

achieving this goal is by a simple trial and error method of changing the model coefficients

for each specific case under consideration. However, there are some observations that apply

to most cases considered. The fourth order dissipation model is responsible for damping

the high frequency noise, produced by the numerical solution, at points away from the

regions of steep flow variable gradients. Large choices of its constant result in a rapid

solution convergence. On the other hand, the magnitude of this constant is directly related

to the magnitude of the solution overshoots. These observations point to the reduction of

the fourth order model constant and increase of the second order model role. Unlike the

static pressure jump across a shock wave, the static pressures across the contact surface of

two mixing layers are matched and there is not a physical pressure jump to activate the

second order dissipation model across a mixing layer. To increase the role of second order

dissipation terms several models were tested. These smoothing techniques included:

(a)

(b)

Use of total pressure as well as static pressure to activate the second order

smoothing terms. This model was not appropriate for more complex

flowfields where both shock waves and mixing layers coexisted in the

solution domain. It also created too much diffusion for simple mixing layer
cases.

(c)

Starting the numerical solution with a very small amount of the fourth order

dissipation term and a small amount of the second order dissipation term

throughout the flowfield and independent of the pressure jump condition,

then slowly reducing the amount of the second order dissipation terms to

zero as the number of iterations increase. This method made the solution

blow up in most cases for which it was used.

Replacing the fourth order dissipation term by a second order term whose

coefficient is a function of the fourth order derivative of the local variables.

Therefore, the second order dissipation term would damp out the high

frequency numerical noise at points away from the regions with steep flow

variable gradients. This method resulted in slowly converging or

nonconverging solutions with unexpectedly large diffusion in some regions
of the flowfield.

Due to lack of success in developing a more accurate and generally valid numerical
dissipation model for the scalar transport equations, it was decided to use the traditional

directional second and fourth order dissipation model with the smallest possible coefficient

of the fourth order term that provided a convergent numerical solution.
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2.2.2 Mixin_ Layers with Uniform Species Composition

In this section, calculation results for turbulent supersonic free shear layers with

uniform species composition are presented. The TVD scheme is used for the solution of the

Navier-Stokes equations, and the directional second and fourth order artificial dissipation

model is used for the solution of the k-e transport equations. The objective is a close

examination of the prediction capabilities of the k-t and the Prandtl mixing turbulence

models and comparison of their results with experimental data. The effects of streamwise

velocity ratio, r = u2/u 1, density ratio, s = P2/P1, and convective Mach numbers on the

spreading rate of supersonic mixing layers are considered. Predictions of Reynolds stresses

by the k-e turbulence model are compared with the experimental results.

The application of the k-t turbulence model to the supersonic mixing layer discussed

earlier, i.e., s = 1, r = 0.785, and M c = 0.2, produces a fully converged solution with no

nonphysical solution overshoots. Figure 2.7 shows the convergence history of this case. The

80 x 55 clustered grid, shown in Figure 2.2, was used. The physical domain of solution has

the height of H = 10 cm. and length of L = 42 cm. The splitter plate is located at the height of

h = 1 cm. The coordinate axes are normalized with the height H. The calculation was

performed on the NAS CRAY Y-MP computer and took about 0.4 CPU seconds per

iteration. The same flowfield calculation using the Prandtl mixing turbulence model, which

does not require solution of any transport equations for the turbulence model, takes about

0.3 CPU seconds per iteration (see Figure 2.6b). The k-e model constants are those given in

Table 1, when the contributions due to the solid wall effects are set to zero. Due to the small

magnitude of the convective Mach number, Mcl, the Zeman's extra compressibility term

was not used with the k-e model.

The k and e inflow profile was based on the inflow profile of the normalized mean

streamwise velocity which was smoothed using an error function. The variation of the

normalized mean streamwise velocity in the two-dimensional solution domain is shown in

Figure 2.8a. The velocity components are normalized with freestream speed of sound

propagation in the top stream. Figure 2.8b presents the profile of the streamwise velocity

along the normal direction, y, at several downstream locations. In Figure 2.8c, normalized

mean streamwise velocity is plotted as a function of the similarity variable _ - (y - Yc)/6,

where y is the local cross-stream coordinate and Ye is the cross-stream coordinate location

where u = 0.5(u 1 - u2) + u2, and 6 is the mixing layer thickness as defined in Section 1.3.3.

For mixing layers the vorticity thickness is defined by

lUl - u21 (2.2.5)

6o (au/aY)ma x
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where (0 u/0Y)max is the maximum slope taken in the linear region of the mixing layer.

Figure 2.9 shows that the calculated vorticity thickness 6a_(x) increases linearly after an

initial development phase. The spreading rate of a mixing layer can be given in terms of the

rate of change of the vorticity thickness, 6_(x), with respect to the longitudinal direction, x.

Based on experimental results of Brown and Roshko (Ref. 51) this spreading rate is a

function of several flow parameters and can be expressed as (ReL 31)

d6o Y2

6'o - --dx " f(r,s,.-7--,glMcl) (2.2.6)

Since the specific heat ratio, F, usually changes from 1.4 to 1.7, the effect of y2 / Yl is assumed

negligible in comparison to the other parameters. For incompressible mixing layers, Mcl is

zero and the above functional relationship reduces to

6_,0 = f(r,s) (2.2.7)

Papamoschou and Roshko (Ref. 31) have used experimental data to develop the following

equation

6' - 0 085 (l-r) (l+s'_) (2.2 8)
_, 0 " 1 + rs _,

The mixing layer under consideration has r = 0.785 and s = 1, therefore, the above equation

results in 6_,0 = 0.0205. The numerical solution of the flow equations, using a k-_ turbulence

model, results in 6_ = 0.0208, which is only one percent larger than the above experimental

value obtained from Equation (2.2.8). The absence of the convective Mach number effect is

expected in this case, since according to Bogdanoff (Ref. 52) these effects are negligible for

Mcl -_0.35.

To gain some quantitative insight into the predictive capabilities of the k-_ turbulence

model used in the calculation of the above mixing layer, the turbulent eddy viscosity and

Reynolds stresses predicted by this model can be examined. Figure 2.10 presents the

distribution of the nondimensionalized turbulent eddy viscosity in the solution domain.

The predicted turbulent eddy viscosity has reached a value almost 500 times larger than the

freestream molecular viscosity within the mixing layer, and smoothly approaches zero

outside the mixing layer.

At the k-_: turbulence modeling level, the Reynolds stresses can be obtained from

Equation (1.3.11). Square roots of the normal Reynolds stresses, u ''2 and v ''2, are normalized

by the velocity difference across the mixing layer and are referred to as streamwise and

lateral turbulent intensities respectively. Similarly, the Reynolds stress, u"v" is normalized

by the square of the velocity difference. The ratio of this normalized Reynolds stress by the

product of turbulent intensities is referred to as the turbulence correlation coefficient. All
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thesequantities,obtainedfrom thecalculationof the above mixing layer, can be compared

with the recent experimental results of Goebel et. al (Ref. 53). The experimental results are

for the case of r = 0.79, s = 0.76, and M c = 0.2, which is very close to the case studied here.

The comparisons are made at the downstream location of x = 400 mm. The comparison of

the calculated similarity profile of the normalized streamwise velocity with the

experimental data is shown in Figure 2.11a. Figure 2.11b displays the comparison of the

calculated and experimental values of the Reynolds stress. Although the calculated result

captures the general shape of the Reynolds stress, it is consistently smaller than the

experimental values by about 25% in the middle of the mixing layer. This difference

reduces near the mixing layer edges. The comparison of the streamwise and lateral

turbulent intensities is shown in Figures 2.11c and 2.11d, respectively.

The k-E turbulence model predicts almost identical lateral and streamwise turbulent

intensities, whereas physically these two components are quite different. The experiment

shows that the maximum value of the streamwise turbulent intensity is almost 42% larger

than the maximum value of the lateral turbulent intensity. Similar behavior is also reported

by Samimy and Elliot (Ref. 54) for a variety of mixing layers. It is interesting to note that in

spite of such considerable differences between the calculated and experimentally obtained

values of the individual components of the Reynolds stress tensor, the mean streamwise

velocity profile (see Figure 2.11a), and the spreading rate of the mixing layer are so well

predicted. Comparison of the predicted and experimentally obtained values of the
. . . .

turbulence correlation coefficient (u"v")/(u'--_')1/_(v"_ 1/2, is presented m Figure 2.12. This

quantity represents the general structure of the turbulence in the mixing layer. Figure 2.12

indicates that the k-E turbulence model does a relatively good job in predicting the behavior

of the general turbulence structure, even though it is not very successful in predicting the

behavior of the individual components of the Reynolds stress tensor. This is the reason

behind the relative success of the k-_ model in predicting the global features of this

flowfield.

To examine the effects of freestream densities on the prediction capability of the k-_

model a supersonic mixing layer between two air streams with the following characteristics

was considered:

M 1 = 1.86, T1 = 1100"K, P1 = 1-013x105 Nt/m2

and

M 2 = 1.46, T2 = 450-K, P2 = 1.013x105 Nt/m2

The speed of air in the top and bottom streams is 648.77 m/s and 423.56 m/s,

respectively. Therefore, r = 0.51, s = 2.44, and, according to Equations (2.2.1) and (2.2.2),

Mcl = 0.55. Figure 2.13 shows the convergence history of this case. As shown by this figure

the solution residual drops by almost five orders of magnitude in 4000 iterations and the

solution is considered fully converged. However, it does not drop as low as the residual of
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the uniform density case, Figure 2.7. The same grid as in the previous cases was used for

this case. An error function was used to smooth the inflow temperature and streamwise

velocity component profiles. Figures 2.14 a, b, c, d, and e show the calculated profiles of the

nondimensionalized temperature, streamwise velocity, turbulent eddy viscosity, turbulent

kinetic energy, and turbulent kinetic energy dissipation rate, with respect to the crossflow
direction, at several downstream stations.

The convective Mach number for this case is large enough to cause considerable

compressibility effects. However, the k-_ turbulence model used for the calculation of this

case does not include the Zeman's extra compressibility term in the turbulent kinetic energy

equation discussed in Section 1.3.2. This exclusion was made to study the density effects on

the basic k-_ turbulence model and to assess the performance of other compressibility terms

in the k and _ transport equations. Figure 2.15 displays the linear increase of the calculated

vorticity thickness 6w(x) in the downstream direction, at the rate of 6_ = 0.0545. The

experimental spreading rate for an incompressible mixing layer with s = 2.44 and r = 0.51 is

obtained from Equation (2.2.8). This relation results in 6_,0 = 0.0585 for the present case.

The experimental ratio of a compressible spreading rate to its incompressible counterpart, at

the same r and s, can be obtained from Figure 17, page 473 of Reference 31. This figure

shows that for Mcl = 0.55, 6' J_'_,o_, 0 = 0.77. Therefore, the compressible spreading rate for
I t

r = 0.51, s = 2.44, Mcl = 0.55, and with 60j,0 = 0.0585 is found to be 6_ = .045. The spreading

rate predicted by the k-_ model is 22% larger than the expected experimental value. If the

compressibility effects are ignored, then the predicted spreading rate is 6% smaller than the

incompressible spreading rate, 6'_,0. On the other hand, if the density ratios, s, is set to one

in Equation (2.2.8), then

1 -- r
6' - 0.17 (2.2.9)
0,0 1 + r

and for r =0.51, 6' =_,0 .0552 which is very close to the predicted spreading rate. This result

clearly indicates that numerical solution of the mixing layer with the k-_ turbulence model,

without Zeman's correction, can only account for the spreading rate caused by the

freestream's velocity ratio r. Furthermore, the freestreams' density ratio effects as well as

the supersonic compressibility effects are not captured. However, it must be noted, in this

case, that the density ratio contribution is about 6% and almost negligible. For a range of

moderate density ratios (0.5 _ s _3.0) with velocity ratios close to one (0.5 __r ,1.0), the k-E

turbulence model has difficulty accounting for the small contributions of the density ratio,

as can be seen from Figure 2.16. However, for very small and large density ratios, the k-_

model crudely follows the experimental trend.

To examine the predictive capabilities of the Prandtl mixing turbulence model and the

basic k-_ turbulence model, without Zeman's dissipation correction, for supersonic mixing

layers with convective Mach numbers between 0.2 and 1.5, a series of calculations were

performed. In all these cases the top and bottom stream temperatures were set to 450" K, so

that s = 1 and the speed of sound would be the same in both streams. The convective Mach
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number wasvaried by changingthe stream'sMachnumbersat the inflow plane. Static
pressurewas kept uniform acrossthe two streams. All of the supersonic mixing layer

calculations were fully converged and resulted in self similar streamwise velocity profiles

(Figure 2.17). The vorticity thickness growth rate results indicated that both of these

turbulence models are incapable of predicting the compressibility effects on supersonic

mixing layers. For both models, the mixing layer spreading rate was only a function of the

streamwise velocity ratio, r. In fact, the k-_ model's predictions very closely followed the

incompressible mixing layer's spreading rate, given by Equation (2.2.8), as can be seen in

Figure 2.18. Moderate changes in the value of compressibility-related constants in the k-_

turbulence model, i.e., n, c_3, and c_4, did not result in any favorable outcome. The Prandtl

mixing turbulence model predicted slightly less spreading at higher convective Mach

number, but it is not clear if this behavior is due to a favorable response to the convective

Mach number increase or an incorrect prediction of spreading rate at smaller velocity ratios.

Nevertheless, the reduction in spreading rates at high convective Mach numbers was too

small to be of any significance.

Next, Zeman's dilatation dissipation model, as given by Equations (1.3.17) and (1.3.18),

was added to the k-E turbulence model and used to calculate the same set of uniform

density supersonic mixing layer cases. The vorticity thickness growth rates obtained from

these calculations were normalized by the incompressible vorticity thickness growth rates

obtained from Equation (2.2.8) at the same streamwise velocity ratios and with s = 1. The

results are compared to the experimental data of Bogdanoff (Ref. 52) in Figure 2.19. From

this figure it can be seen that Zeman's correction produces a considerable and sudden drop

in the vorticity growth rate for convective Mach numbers larger than 0.2, while the

experimental results indicate a slow, gradual reduction for convective Mach numbers less

than 0.5. Also, the rate of reduction of the growth rate is much faster than the experimental

results and the growth rate levels off at a much lower value than that suggested by the

experimental results. Figure 2.20 shows the calculated and experimentally (Ref. 55)

obtained maximum values of the Reynolds stress as a function of the convective Mach

number. Here the calculations, using the Zeman dilatation dissipation model, predict

smaller and more rapidly reducing maximum Reynolds stress for increasing convective

Mach numbers. This trend is consistent with the large vorticity growth rate reduction

discussed above, since as the Reynolds stress reduces, so does the mixing layer growth rate.

Therefore, it can be concluded that even though Zeman's correction model produces the

general trends, it fails to compare favorably with the experimental results. The application

of this model to wall jets and other wall-bounded flows results in solution blow-ups or

nonphysical turbulent quantities predictions. This leads to the conclusion that this model is,

at best, restricted to free mixing layers, for which it was designed, and is not universal

enough to be used in complex flowfields.
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2.2.3 Hydrogen-Air Mixin_ Layers without Chemical Reactior

In this section, mixing layers between a supersonic stream of hydrogen fuel at

moderate temperature and a supersonic stream of high temperature air are considered.

Physically, such streams go through a chemical reaction process after the turbulent and

molecular mixing processes bring the mixture to a stoichiometric proportion. However, the

intention of this section is to explore the accuracy of the numerical solver and the turbulence

models when applied to turbulent supersonic mixing layers with nonuniform species

composition. Therefore, the chemical reaction process is artificially switched off by setting

all chemical source terms, in the species transport equations, equal to zero. The numerical

solver must now solve for several species mass fraction transport equations in addition to

the Navier-Stokes equations and k and t transport equations for the turbulence model. As

discussed in Section 2.1.2, the flow solver in the present version of the RPLUS code uses a

TVD scheme for the integration of the Navier-Stokes equations and a central differencing

method, plus a directional second and fourth order artificial numerical dissipation model

for the integration of the species equations and the k-t turbulence model transport

equations. The 80 x 55 clustered grid shown in Figure 2.2 is used here.

The top stream of the supersonic mixing layer considered here was air at Mach number

of 1.86, temperature of 1100oK, and pressure of 1.013 x 105Nt/m 2. The bottom stream was

pure hydrogen fuel at Mach number of 1.46, temperature of 4500K, and pressure of

1.013 x 105 Nt/m 2. At these inflow conditions, the air stream's speed of sound propagation

was 648.77 m/s with a specific heat ratio of 1.33. The fuel stream's speed of sound was

1612.77 m/s with specific heat ratio of 1.4. This resulted in freestream velocity ratios of

r = Uair/Ufuel = 0.51 and density ratio of s = Pair/Pfuel = 5.86. Using Equations (2.2.1a),

(2.2.1b), and (2.2.2), the convective Mach numbers of the large structure eddies with respect

to the two streams can be obtained and are given as Mcfue ! = 0.504 and Mcair = 0.517. The

slight difference here is due to the difference between freestream specific heat ratios. Except

for the nonuniform species compositions, the controlling parameters for the above mixing

layer, i.e., s, r, Mcl , and Mc2 are not very different than the previously studied case of air

streams with large temperature difference (see Figures 2.13 through 2.15). Since that case

was predicted with a relative degree of success, it was expected that reasonable results

could be obtained for the present case. However, contrary to expectation, the solution for

the nonuniform species composition case presents several major problems and inaccuracies.

The cause of these inaccuracies can be directly traced to the effect of the second and fourth

order artificial dissipation model used for the species transport equations, and the creation

of large overshoots in the cross-stream profiles of the species mass fractions. Such

overshoots result in distorted temperature and pressure profiles. Before presenting the

solution of the above flowfield, using a k-t turbulence model, it should be noted that the

application of the Prandtl mixing turbulence model, with a turbulent Schmidt number of

0.7, results in a solution with an oscillatory residual. The only way to get rid of the residual

oscillations is to increase the turbulence model coefficient, C m (see Eq. (1.3.19)), by at least

60% to the value of 0.0162. This reinforces the previous observation (see Section 2.2.1 and

Figure 2.6a) that the Prandtl mixing turbulence model results in a nonconverging solution

- 55 -



when usedwith thesecondand fourth order artificial dissipationmodel for the solutionof

any averaged transport equation.

Figure 2.21 presents the convergence history of the solution of the above air/hydrogen

mixing layer with a k-_ turbulence model. The density residual drops by about two orders

of magnitude after about 1600 iterations and decreases very slowly afterwards. In Figure

2.22a oxygen mass fraction variations in the whole solution domain are shown, indicating

overshoots on the air stream side throughout the flowfield. To provide a closer look, the

oxygen mass fraction profiles at several downstream locations are shown in Figure 2.22b. It

can be clearly seen that there are large overshoots of more than 10% of the maximum

allowable level of oxygen mass fraction in the airstream side. The levels of overshoots and

undershoots are directly related to the magnitude of the fourth order artificial dissipation

coefficients. Due to the absence of any supersonic shock in this flowfield, the second order

artificial dissipation term does not play any role here, and its coefficient, Ic2, in Equation

(2.1.17) is set to zero. The presence of the fourth order artificial dissipation term is essential

to maintain stability and dissipate high frequency noise in the inviscid portion of the

flowfield, outside the turbulent mixing layer. However, it must be much smaller than the

physical viscous terms in the mixing layer region. This appears to be the case for most of

the flowfield except at the edges of the mixing layer, where the physical viscous terms tend

to become very small and the fourth order artificial dissipation terms can become locally

large and create the overshoots and undershoots in the profiles of the flow variables being

solved for. To minimize this problem, the coefficient of the fourth order artificial dissipation

term, Ic4, in Equation (2.1.18), must be chosen large enough to be effective in the inviscid

region and small enough to cause minimum overshoots at the mixing layer edges. Trial and

error experimentations indicated that the value of !c4 = 1/128 is needed to dissipate high

frequency numerical noise in the inviscid region of the flowfield. Unfortunately, this value

is not small enough to prevent the occurrence of overshoots at the mixing layer edges.

Hence, distorted species mass fraction profiles are obtained, which in turn result in distorted

temperature profiles as shown by Figure 2.22c.

The effect of the smoothing of the temperature and species mass fractions at the inflow

plane was examined by use of an error function to provide smoothed profiles at the inflow

plane. However, this could not prevent the occurrence of the overshoots and merely shifted

the location of the maximum overshoots as shown in Figures 2.23a and 2.23b. The basic k-_

turbulence model without any modifications of the model constants was used for these

cases. The Zeman's extra compressibility term could not be used with these cases. This

model produced such small turbulent diffusivities for species mass fraction equations, with

Sct = 0.7, that the solution blew up. This reconfirms the previous conclusion about the lack

of universality of this model for complex supersonic flowfields.

1

i
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2.2.4 Hydrogen-Air Mixing Layers with Chemical Reaction

In the previous chapter it was shown that the present version of the RPLUS code is

incapable of producing an accurate solution for mixing layers between supersonic streams

of high temperature air and moderate temperature hydrogen fuel. It was argued that the

fourth order artificial dissipation model, needed for the solution of species transport

equations, causes nonphysical overshoots in the cross-stream profiles of the species mass

fractions. This problem, in a more accurate form, is also present in the chemically reacting
cases. In this section the PDF combustion closure model and the finite rate reaction model

are considered for the calculation of chemical reactions between an air stream at 1100" K and

a hydrogen-nitrogen fuel stream at 450 *K.

The top stream of the supersonic reacting mixing layer considered here was air at Mach

number of 1.86 and pressure of 1.013 x 105 Nt/m 2. The bottom stream was a mixture of

48.2% hydrogen and 51.8% nitrogen at Mach number of 1.46 and pressure of 1.013 x 105

Nt/m 2. At these inflow conditions the air stream's speed of sound was 648.8 m/s with

specific heat ratio of 1.33. The fuel stream's speed of sound was 1162 m/s with specific heat

ratio of 1.4. This resulted in freestream velocity ratio of r = Uair/Ufuel = 0.71 and density

ratio of s = Pair/Pfuel = 3.0. The convective Mach numbers of the large structure eddies with

respect to the two streams are given as Mcfue I = .268 and Mcair = .273. The slight difference

is due to the difference between freestream specific heat ratios and one can assume

Mcfue 1 = Mcair = 0.27.

To compare the performances of the finite rate reaction model and the PDF reaction

model, they were both applied to the flowfield described above. The k-a turbulence model

without any modifications to its modeling constants was used for all calculations presented

here. Figures 2.24a and 2.24b show the convergence history of the flowfield's solution for

the finite rate reaction model and the PDF reaction model respectively. In neither case does

the solution result in a low level of residual after 3,000 iterations. Smoothing of the solution

variables at the inflow plane, the use of the Prandtl mixing turbulence model, or the increase

of the fourth order artificial dissipation coefficient did not produce a converged solution

with a low level of residual for any of the reaction models. In fact, some of these changes

caused the solution to blow up. The finite rate reaction model residual curve initially

displays large amplitude oscillations. However, after 2500 iterations, declining high

frequency oscillations with small amplitude set in. On the other hand, the PDF reaction

model residual curve displays low amplitude oscillations with the amplitudes declining as

the number of iterations increase. However, the magnitude of the residual increases

steadily and appears to level off, after 2700 iterations, to an unacceptable value. Therefore,

the residual curves for both reaction modelsindicate severe problems with the solution of
the flowfield.

Since there are no shock waves in the flowfield, there is not sharp local jump in the

pressure values and the second order artificial dissipation model is not activated. To get rid

of the high frequency numerical noise in the far field solution, the minimum value required
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for the fourth orderartificial dissipationcoefficient,r 4,is 1/128 for the PDF reaction model

and 1/32 for the finite rate reaction model. In the PDF formulation artificial dissipation is

used for the solution of the mixture fraction's mean and variance transport equations. In the

finite rate reaction formulation, the artificial dissipation is required for the solution of the

species transport equations. The fact that K4 needed for the finite rate reaction formulation

is four times larger than what is needed for the PDF formulation may be due to the

exponential source terms appearing in the species transport equations.

Unfortunately, the fourth order artificial dissipation causes large overshoots in the

cross-stream profiles of the air and fuel species mass fraction, producing nonphysical

behaviors. Figure 2.25a shows the oxygen mass fraction's cross-stream profiles at the inflow

plane and at x = 350 mm downstream of the inflow plane predicted by the finite rate

reaction model. The overshoot in the magnitude of the oxygen mass fraction, at this

location, is about 30% larger than the maximum value allowable. Even though the oxygen

mass fraction behavior is completely incorrect, the water mass fraction and the mean

temperature profiles (see Figures 2.25b and 2.25c) are relatively trouble free, except for their

sharp approach to the freestream air values at 0.23 _. y/H ,_ 0.25. However, the velocity

components and pressure field are strongly affected by these nonphysical behaviors and a

useless solution is provided. The effect of the fourth order artificial dissipation model on
the PDF reaction model is to create overshoots in the mean mixture fraction cross-stream

profiles. Here again the predicted water mass fractions and mean temperature profiles

appear to follow the expected trends. Figure 2.26a shows the nondimensionalized mean

temperature cross-stream profiles at the inflow plane and at the downstream location

x = 350 mm. The value and the cross-stream location of the maximum temperature

achieved in the reaction, as predicted by the PDF reaction model, are slightly lower than

those predicted by the finite rate reaction model and the trends are very similar. However,

the maximum value of the water mass fraction predicted by the finite rate reaction model is

about 50% larger than that predicted by the PDF reaction model as can be seen by

comparison of Figures 2.25b and 2.26b. Since none of the reaction models produced a

completely accurate and converging solution, no attempt was made to compare the mean

temperature and the reaction product's mass fraction with experimental results.

A close look at the mean temperature and water mass fraction profiles predicted by the

PDF reaction model reveals that, unlike the finite rate reaction model predictions, the

approach to the freestream air values is very smooth. However, the approach to the

freestream fuel values is quite bumpy. The cause of this bumpiness goes to the heart of the

problem created by the fourth order artificial dissipation model. As explained earlier in
Sections 1.6.4 and 2.1.4 the PDF reaction model obtains the mean value of thermodynamic

quantities and species mass fractions in the flowfield by constructing the probability density

function of the scalar mixture fraction and integrating this function over appropriate

thermochemical domains obtained from chemical equilibrium reaction calculations. The

construction of the mixture fractions' probability density function is based on the mean and

the variance of the mixture fraction obtained from their transport equations. Since the

central differencing scheme is used for the spatial integration of these transport equations,
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the fourth orderartificial dissipation model is added to get rid of high frequency numerical

noise created at the far field. Therefore, the overshoots created by the fourth order artificial

dissipation in the mean mixture fraction cross-stream profiles affects the calculated value of

all of the thermochemical quantities. The values of the mean mixture fraction are bounded

by one in the pure fuel stream and zero in the pure oxidizer stream. Therefore, in the case

presented here, the mean mixture fraction, _, is one in the hydrogen-nitrogen stream and

zero in the air stream. Since values larger than one and smaller than zero are not allowed,

these limits must be enforced if there are any over- or undershoots in the solution of the

mean mixture fraction. In the RPLUS code a transport equation is solved for the quantity

pO. Figure 2.26c presents the cross-stream profiles of the p_ at the inflow plane and two

downstream planes. The overshoots observed here result in similar overshoots in the

profile of the mean mixture fraction, _. The truncated cross-stream profiles of the mean

mixture fraction are presented in Figure 2.26d. The processes of eliminating mean mixture

fraction overshoots, near the inflow plane, result in the creation of exaggerated oscillations

in its downstream profiles. These oscillations are then reflected in the prediction of the

cross-stream profiles of the thermodynamic quantities and species mass fractions, as can be
seen in Figure 2.26a and 2.26b.

The results presented in this section indicate that, regardless of the chemical reaction

model used, the present version of the RPLUS code is incapable of providing an accurate

solution for any type of parallel fuel injection diffusion flame. This conclusion is consistent

with the results presented in previous sections. The detailed consideration of a series of

mixing layer calculations presented in this chapter strongly points to the method of spatial

integration of the scalar transport equation in the RPLUS program as the main source of this

problem. This problem can be removed by the use of an upwind integration scheme.

It is clearly impossible to assess the accuracy of the supersonic PDF reaction model on

the basis of the results obtained from the present version of the RPLUS program because of

inherent inaccuracies of the RPLUS program. However, the comparison of the PDF reaction

model results with those of the finite rate reaction model, and the presence of consistent

solution trends, indicate that the supersonic PDF reaction model presented here should be

pursued further after improving the numerical integration scheme of the RPLUS program.

2.3 Supersonic Wall-Bounded Shear Layers

The prediction capabilities of the present version of the RPLUS program for wall-

bounded supersonic shear flows are examined in this section. Supersonic turbulent flows

over a flat plate with zero axial pressure gradient and compression ramps are investigated.

The range of freestream Mach numbers considered was from one to seven and the Reynolds

number, based on the length of the streamwise direction, ranged from 3.8 x 106 to 1.2 x 107.

In all cases air at 318. K with real gas properties was used as the working fluid. No slip,

adiabatic wall conditions were assumed for all solid surfaces. Detailed discussion of inflow,

outflow, wall, and far field boundary conditions used in the calculations can be found in

Section 2.1.5. As explained in the previous chapter the present version of the RPLUS code is
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equipped with Jones-Launder (Ref. 29) and the Chien (Ref. 30) versions of the low Reynolds
number k-_ turbulence model, in addition to the Baldwin-Lomax (Ref. 33) zero-equation

turbulence model. Jones-Launder and Chien turbulence models were developed for

incompressible wall-bounded flowfields with moderate temperature and density variations

across the flowfield. Chien's model uses the normal distance from a solid wall to account

for the near wall effects. On the other hand the Jones-Launder model's low Reynolds

number correction terms are not explicitly functions of the normal distance from a solid

surface and are more attractive for complex flowfields where solid surfaces at different

angles to the mean flow direction and regions of separated and recirculating flowfields are

present. In this model, the low Reynolds number effects are accounted for through the use

of a local turbulent Reynolds number (see Table 1 in Section 1.3.2). This method of

accounting for the near wall effects appears to cause large inaccuracies in the prediction of

high Mach number supersonic flows over an adiabatic fiat plate. In these cases, the density

variation becomes very large across the boundary layer, with a very large gradient near the

wall. The local turbulen( Reynolds number used by the Jones-Launder model is affected by

these density variations, whereas the Chien's model is not greatly influenced. Due to this

inadequacy of the Jones-Launder model, this model's results are not discussed any further

and the results presented are those of Chien's model. The use of the Zeman dilatation

dissipation term for wall-bounded flows results in negative values of turbulent kinetic

energy close to the wall and cannot be used in its original form, for these flowfields.

The use of a low Reynolds number k-_ turbulence model makes it possible to integrate

the turbulence model's transport equations all the way to the wall and avoids the use of

turbulent wall functions (Ref. 17). However, a very fine grid spacing is required to capture

the large gradients of turbulent quantities in the near wall region. Letting r w, Pw, and/1 w

denote shear stress, density and dynamic molecular viscosity at the wall, the friction

velocity can be defined as u* = (rw/Pw)'/_ • Using this friction velocity, the normal distance

from the wall can be normalized as y+ = ypwU*//_w • This quantity represents a highly

stretched normal distance from the wall such that for a turbulent boundary layer the

laminar sublayer is at about y+ __7, inertia region is at 7 _ y÷ __30, and the outer edge of the

boundary layer is typically at y÷ - 1000. To properly resolve the near wall region, a layer of

nodes at the distance y+ < 1 is needed. Therefore, a stretched mesh is used to reduce the

number of grid points used in a calculation. It has been observed that the RPLUS code does

not perform well when the stretching between two adjacent cells is more than ten percent.

Therefore, for a given freestream Mach number and Reynolds number at the inflow plane, a

smoothly varying stretched grid is generated with the first node layers away from the wall

at y+ < 1. Figures 2.27a and 2.27b show the grid for a flat plate supersonic flow with

M.. = 3.0 and Re.. = 2.5 x 106. The height of the domain is H = 0.02 m and its length is

L = 0.10 m. Coordinate axes are normalized by the height of the domain. To check the

solutions' grid dependence, the number of grid points were increased by a factor of two. In

all flat plate cases considered here, the doubling of the grid points caused the calculated skin

friction to change by less than one percent and solutions were considered grid independent.

l
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Figure 2.28 shows the convergence history of the solution of a turbulent supersonic

flow over a fiat plate with inflow freestream Mach number, M® = 3 and Reynolds number,

Re** = 2.5 x 106. Chien's low Reynolds number k-E turbulence model is used for this

calculation. The density residual drops by three orders of magnitude after 3500 iterations

and it gradually decreases, indicating a converged solution. The turbulent kinetic energy

residual curve and kinetic energy dissipation residual curve follow a similar pattern as the

density residual curve. The comparison of the calculated mean streamwise velocity profile

with the experimental results of Laderman (Ref. 56) and Robinson et al (Ref. 57) is shown in

Figure 2.29. This figure indicates that the calculated results compare well with the

experimental data. The second Crocco-Busemann (Ref. 58) relation between static

temperature and streamwise velocity for an ideal gas compressible boundary layer on an

adiabatic fiat plate with zero pressure-gradient is given as

Pr 2
T- ---u + T

2c w
P

where Pr is the Prandtl number and cp is the specific heat at constant pressure. Figure 2.30

shows the calculated variation of the mean static temperature with respect to mean

streamwise velocity across the boundary layer. The theoretically expected variation of

temperature with respect to the streamwise velocity obtained from the second Crocco-

Busemann relation is also shown in this figure. The comparison indicates a good agreement

between the calculated results and the theoretical relationship, especially as one approaches

the wall. The deviation of the predicted results from the Crocco-Busemann relation is

caused by the fact that the recovery factor, defined as

r - 2cp(T w - T_)/u_

is assumed equal to the Prandtl number in the Crocco-Busemann relation. The predicted

recovery factor is 0.85, which is 13% larger than the value of the Prandtl number, Pr = 0.75.

The experimental results of Laderman (Ref. 56) indicate that the recovery factor for the

above case is about 0.907, which is 6% larger than the predicted value, and 21% larger than

the value of the Prandtl number. Other experiments (Ref. 58) also indicate that the recovery

factor is approximately equal to (pr) 1/3. Therefore, the predicted result is closer to the

experimental results.

u ÷ represents the mean streamwise velocity normalized with the friction velocity. The

u + profile versus y+ for IVl. = 3 boundary layer is given in Figure 2.31. The incompressible

boundary layer velocity profile given by u + =y+ for y+ - 10, and u + = 2.5 In y+ +5.5 for

y+ > 10 is also shown in the same figure. Experiments (Ref. 19) indicate that in the wake

region of the turbulent boundary layer the supersonic u + values fall below the

incompressible values at the same y+ location. However, the difference displayed in Figure

2.31 is much larger than the expected drop. This behavior can be explained by examination

of the calculated skin friction values, defined as
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Figure 2.32 presents the calculated skin friction values for a range of freestream Mach

numbers at the location where Re x - 107. The calculated value at M,., = 3 is about ten percent

larger than the experimental value (Ref. 56). Such a small difference can not produce the

observed behavior in the u ÷ profile. However, comparison of the calculated supersonic skin

frictions normalized with the incompressible skin friction with the theoretical formula

proposed by Van Driest (Ref. 59) (see Figure 2.32b) indicates that there are large differences
between the calculated and theoretical normalized skin frictions. The differences reduce

substantially as the Mach number increases. However, at M. = 3 there is about 25 percent

difference between the predicted and theoretical results. Recalling that u ÷ = u/u*, where u*

is the friction velocity, one can see that the large value of the predicted ratio of compressible

skin friction to incompressible skin friction, results in the small values of the u + observed in

Figure 231.

For the case of M. = 3.0 the predicted total shear stress is normalized by the wall shear

stress, and its distribution across the boundary layer is compared with the experimental

results of Laderman and Demetriades (Ref. 60) in Figure 2.33a. As can be seen in this figure,

the predicted magnitude and cross-stream variation of this quantity are in good agreement

with the experimental results. In Figure 2.33b the IV_ = 5 shear stress distribution and the
Sandborn (Ref. 61) best estimate curves are also shown. The predicted shear stresses at

M. = 3 are slightly below the Sandborn curves, whereas the values for M® = 5 are

consistently larger and closer to the Sandborn best estimate curves.

Next, to evaluate the accuracy of the k-_ turbulence model used in the calculation, the

predicted turbulent quantities are compared with the available experimental results.

Figures 2.34a and 2.34b show the streamwise and transverse velocity fluctuationsfor M_ = 3

case. Velocity fluctuations are defined as

u' = (u"2) '/2 and v' = (v"2) '/2

The predicted results are compared with the experimental results of Laderman and

Demetriades (Ref. 60) and Robinson et al (Ref. 57). Clearly, the most important shortcoming

of the k-¢ turbulence model is the isotropic nature of this model. The model predicts very

similar values and distributions for the streamwise and transverse velocity fluctuations in

the boundary layer. The predicted locations of peak values of these quantities are very close

to the experimental values; however, the magnitude of the peak values are underestimated

by about 25 percent. The transverse velocity fluctuations are in good agreement with the

hotwire measurements across the turbulent boundary layer except close to the wall region.

On the other hand, the streamwise velocity fluctuations are overpredicted by about ten

percent across the boundary layer, except close to the wall, where they are underpredicted

by 25 percent. The experimental results (Ref. 60) indicate that the streamwise velocity

fluctuations rapidly decrease with increasing freestream Mach numbers. The streamwise
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velocity fluctuation is normalized with the friction velocity, and variations of its values at

the point y/6 = 0.5, in the turbulent boundary layer, are compared with experimental

values in Figure 2.35a (6 denotes the boundary layer thickness). This figure indicates that

the present calculations correctly predict the expected decrease of streamwise velocity

fluctuation with increasing Mach numbers. The only problem is that a similar behavior is

predicted for the transverse velocity fluctuations, whereas the experiments show that the

transverse velocity fluctuations are independent of the freestream Mach numbers.

Therefore, the increasing freestream Mach number results in a highly anisotropic flow,

characterized by transverse velocity fluctuations being much larger than the streamwise

velocity fluctuations. The k-_ turbulence model in its present form is incapable of

predicting such anisotropic behavior.

The Reynolds stress correlation coefficient is defined as

R
uv

I

(u,, 2) (v -2 )

The predicted correlation coefficients at y/6 = 0.5 are equal to 0.3 for all Mach numbers

considered. As shown in Figure 2.35b, the above predicted value is very close to the

experimental results of Yantal and Lee (Ref. 65) at Mach 3. However, based on a large pool

of experimental results, Laderman and Demetriades (Ref. 60) have decided that the value of

the Reynolds stress correlation coeffident at y/6 = 0.5 is independent of both Mach number

and wall temperature and is approximately 0.5. This experimental value is about 65 percent

larger than the predicted value of the correlation coefficient; however, from the point of

view of turbulence modeling it is important that the calculations correctly predict the

independence of this quantity from Mach number changes.

Figure 2.36a shows the maximum values of the turbulent kinetic energy, normalized by

the friction velocity, at the downstream location where Re x - 107 as a function of Mach

number. This figure indicates that the maximum turbulent kinetic energy decreases with

increasing freestream Mach number; however, the rate of decrease of this quantity reduces

considerably for freestream Mach numbers larger than five. Figure 2.36b shows the

normalized transverse location of the maximum turbulent kinetic energy in the boundary

layer. It is interesting to note that both the maximum value of the turbulent kinetic energy

and its transverse location decrease with the freestream Mach number. The available

experimental results were not sufficient to substantiate this trend.

Based on the examination of the predicted results provided by the present version of

the RPLUS code with a low Reynolds number k-_ turbulence model, it can be concluded

that, except for inherent shortcomings of the k-e turbulence model, the calculated results

compare favorably with available experimental data for supersonic flows over a flat plate.
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The application of the present version of the RPLUS code with the Chien's k-_

turbulence model to 8, 10, and 20 degree compression ramps was not satisfactory. At small

ramp angles erroneous solutions were obtained and at large ramp angles the solution blew

up. To understand the basic reason behind these problems, the solution of a Mach 2.87 flow

over an adiabatic eight-degree ramp is considered. A 121 x 101 stretched grid with the first

transverse node layers at y+ < 1 (see Figure 2.37) was used. The height of the domain was

H = .12 m and its length was L = .48 m. Coordinate axes were normalized with the height of

the domain. Figure 2.38 shows the convergence history of the solution. The density

residual drops by two orders of magnitude after 2700 iterations and is gradually decreasing,

indicating a converged solution. Figure 2.39 shows the comparison of the predicted surface

static pressure distribution with the experimental data of Settles et al (ReL 67). This figure

indicates that the pressure profile across the shock is well captured. However, the

comparison of the predicted skin friction with the experimental results (see Figure 2.40)

indicates that the skin friction is greatly overpredicted. The incorrect behaviors of the

turbulent kinetic energy and the turbulent kinetic energy dissipation rate in the flowfield

cause such erroneous results. The reason for this behavior in the solution of the k-e

equation is the large levels of second and fourth order numerical dissipation coefficients

required to obtain the above converged solution. In the calculation of fiat plate cases

discussed earlier the second order and the fourth order artificial dissipation coefficients, t¢2

and r4, were set to zero and the 1/128 respectively. For the 8 degree ramp case minimum

coefficients required to obtain a solution were r2 = 15 and _c4 = 1/16. Subsequently, these

large numerical dissipation terms completely distorted the solution of the k-_ equations,

resulting in the wrong skin friction coefficient and other flow quantities. The same difficulty

was present for the ten and twenty degree ramp cases. A survey of the current literature on

the application of higher order turbulence models to flowfields with shock waves indicates
that a numerical scheme witha robust numerical dissipation, such as MacCormack's scheme

(Ref. 68) or a TVD scheme (Ref. 46), is needed in the k-_ solver to have a well behaved

solution for the turbulent quantities. Here, as in the case of chemically reacting mixing

layers, it is clear that the lack of a TVD scheme for the solution of the turbulence model's

transport equations is the main cause of the failure of the present version of the RPLUS code

in the case of relatively complex flowfields. It is recommended that a general TVD scheme

be developed and incorporated into the RPLUS code before any further improvement of the

turbulence and combustion models.

- 64 -



CHAPTER 3. JOINT PDF ANALYSIS OF COMPRESSIBLE FLOWS'

The objective of this chapter is the study of various formulations of pelf equations for

compressible turbulent flows and the analysis of their structural properties. The results to be

reported here are the analysis of a prescribed pdf formalism suitable for reacting compressible

flows, theoretical study of the joint pelf of nonreacting compressible flows, and the study of

random discontinuities in compressible flows and their effect on pdf methods.

3.1 Prescribed pdf formalism for compressible turbulent flows with combustion.

Compressible turbulent flows with combustion reactions that are assumed infinitely fast '

can be described locally by three thermodynamic variables. There are several equivalent

possibilities for the choice of these variables and in the present case the set (_,u,p) will

be considered, where ¢ denotes mixture fraction, u the specific internal energy and p the

density. This particular set is appropriate for implementation in a general solver (RPLUS)

for compressible flows. The calculation of the mean thermodynamic state requires then the

pdf f((, u, p; x__,t) of the three scalar variables and the expectation of any local function ¢ of
the scalars follows from

('_)(z_,t)= f d( f du f dp_((,u,p)f((,u,p;z__,t)

The integration is carried out over the set $3 of all realizable states called scalar space.

There two methods for the determination of the pdf and in the present case only the explicit

construction of the pdf in the form of a functional relation to selected moments of order one

and two will be discussed. The construction of the pdf depends crucially on the geometry of

the scalar space $3 spanned by the set of all realizable values for the scalar variables. For

mixture fraction, internal energy and density it follows that $3 is given by

s3 = < ¢ < < < < p < p,(¢)} (3.1.2)

where uo(_),po(¢) and ul(¢),pl(¢) are extremal values for the internal energy and density

depending on mixture fraction which can be estimated from an expected pressure variation

in the flow field. If such estimates cannot be established, internal energy should vary in an

interval given by realizable states (which depends on mixture fraction) and density in [0, co).

The scalar space is of sufficiently simple structure to allow construction of the pdf. Several

possibilities will be considered.

3.1.1 Specification of order one and two moments.

The method of constructing the pdf consists of two steps: First mappings are used to

transform each scalar to an image variable with the range (-oo, oo). Then a three-dimensional

Gaussian pdf for the image variables is constructed which requires exactly all moments of

order one and two. However, nonlinear mappings imply that first and second order moments
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of the image variables depend possibly on a larger set of moments or all moments of the
original variables, which defeatsthe purposeof constructing the pdf from first and second
order moments only. However, the geometry of the scalar space contains information on
possiblecorrelations, which may prove valuablefor the construction of the pdf. This will be
exploited in chapter 4 in the context of the zero Mach-number limit.

3.1.2 Independent variables.

The scalar space is assumed to be a cube. This case serves as an example only and

will be shown to be unacceptable for reacting flows, but quite realistic for the nonreacting

case. All moments of order one and all variances are specified and the variables are assumed

independent. It follows that the pdf is then the product of the single scalar pdfs

f((, u,p) = f¢(()A(u)G(p)

The most important quantity to be calculated from the pdf is the mean pressure (p), which

enters the averaged balance equations for momentum and energy thus modifying the flow

field according to the heat released by the combustion reactions. The functional relation of

the pdfs fi to the respective moments is set up as follows. Mixture fraction varies in the unit

interval and for this reason the beta-function B is chosen as realizable pdf.

1 ot 1

B((;x_,t) = _( - (1- ()_-1 (3.1.4)

where the exponents a and fl depend on mean and variance of mixture fraction and N denotes

the normalizing denominator defined by

N --/01 d((_-l(1 - () _-1

The exponents can be expressed in terms of the mean and variance

(tt2

where the tilde indicates Favre-averaging.

Gamma-function.

_V = r(a)r(_)

(3.1.6)

(3.1.7)

The denominator can be evaluated using the

(3.1.8)
r(. +

It remains to set up the modelled transport equations for the mean _ and the variance (,,2.

It follows from the instantaneous balance for mixture fraction

(3.1.9)p(o +v.0_o) ( o a(.

i

!

I
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that mean and variance are governed by

a< axe"
(3.1.10)

where #t denotes the turbulent viscosity and

= az--:{((p)r+- + 2(p>_¢ (3.1.11)°o )_ _ o-¢a=. a=.

where _¢ denotes the scalar dissipation rate. This completes the construction of the pdf for

mixture fraction. Since the scalar space is a cube, both internal energy and density vary

in domains with bounds independent of the scalars. Therefore, normalized variables can be

defined which are statistically independent. First and second order moments must be specified

for density and internal energy if pdfs such as the beta-function are employed. Density will

be considered next. Mass balance appears in Favre-averaged form as

a(p.__)Ot+ O--_xOa((p)_a) = 0 (3.1.12)

and the variance (p,2) is governed by

a 0 O aS,, 2" 'v"" O(p) , ,2 cgv_, , cgv_
- _p b-_:__- 2(p)(po--_.)

(3.1.13)
Closure models are required for turbulent diffusion and three of the four source/sink terms in

(3.1.13). It is worth noting that none of the source terms is clearly destructive or productive

in contrast to the variance of mixture fraction for instance. The first (and closed) source term

•,, ,2, 05a

is apparently productive for compression in the mean and destructive for expansion. The
second term

Q2 - -2( p'v'% cg(p)
or/ C_ X ot

is clearly productive if the gradient-flux model holds as in crossflow direction of boundary-

layer flows, but is destructive in longitudinal direction as measurements in turbulent diffusion

flames have shown (see Ref.41). The third term

C_2a t

is also productive for fluctuating compression and destructive for expansion like Q1. The last
term

q, - -2(p)_p_-_=I
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is difficult to estimate. There are two obvious possibilities: p' and the fluctuating divergence

of velocity are weakly correlated or strongly correlated. Q4 can be neglected in the first case.

In the second case of strong correlation it is likely that compression (negative divergence)

implies positive density fluctuation and expansion negative p'. Hence is Q4 in essence a

production term in this case. However, no estimate for its magnitude can be offered at

present. The particular case of density weighted pdfs requires also the third moment as will

be shown later. The transport equation for the third moment can be derived in same manner

as for the variance. The result appears in the form

a ,,,9 a ,_ a_o ,,, '_v",o(P) a,.,_, o, ,, ,_a,,_(_/+'_o,:,_,_)(P'_)- 07,,,(K_'")- 3(p )_--_ °_P °_o-C_ 2(P'_b-C_)- °_P_P ___)
(3.1.14)

There are four source/sink terms describing the interaction of the turbulence with the mean

rate of strain and the mean density gradient, and the interaction of the fluctuating density

with the fluctuations of the rate of volume expansion. It will be shown in chapter 4 that the

prediction of the pdf with nonzero density fluctuations due to compressibility effects requires

the third moment.

3.1.3 Statistical independence in transformed scalar spaces.

All moments of order one and all variances are specified and the variables are assumed

independent, b'hrthermore, the case that the variances for certain functions of internal energy

and density are set to zero, is also considered. The trivial case is obtained if the mappings

are identities. If the variances for density and internal energy are zero, it follows that the

expectation of any local function ff of the scalars is given by

I d_ 'I'(C' fi' (p)) f((; z_, t).(e)(_i t) = (p) p

where f denotes the unweighted pdf. This restricted definition of the pdf

f((,,,, p)= f¢(C;__,t)_(,,- ,_)_(p- (p)) (3.1.15)

is applicable if the scalar space is a cube. It should be noted, however, that the scalar space

cannot be a cube if one of the scalars is enthalpy or internal energy and chemical reactions

take place, because the enthalpies of formation for reactants and products are different and

extension of the scalar space to a cube can lead to unphysical states (negative absolute

temperatures).
The mean pressure plays a central role in the solution procedure RPLUS and it is of

prime importance to calculate the derivatives of (p) with respect to the other dependent

variables. Let the mean pressure be given by

' ["'"' /'""d,,p¢¢'"'
(p) = (p) / d(_j,,o(¢) du.x,,,o(¢) P P)f((,u,p;_,_i72,_,u'2,(p),(p'2),(p'3)) (3.1.16)

i

i

1
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where p((, u, p) is the local thermodynamic relation of the pressure to the scalars and the

integration is carried out over the scalar domain. The essence of the prescribed pdf formal-

ism is the_ _sumption of the local dependence of the pdf on the selected set of moments

(, (,,2, fi, u,,2, (p), (p,2), which are called defining variables. Since this functional relation is

known, it follows that the derivatives of the mean pressure or the expectation of any other

function of the scalars with respect to the variables in this set can be established. For instance,

the derivative of (p) with respect to ( is given by

0(p)

(P) 9_o d( du (3.1.17)o( J.o(<) Cpo(<) p

and the derivative of the pdf can be calculated explicitely.

3.1.4 Construction of the pdf.

The density-weighted pdf for mixture fraction, internal energy and density will be con-

structed in the form of a product of functions given by

f((,u,p) = f¢(()f_,(u*((,u,p))f;(p'((,u,p)) (3.1.18)

and the variables u* and p* are functions of (, u, p such that f_ = 6(u* - {u*)) and

f_ --- 6(p* - (p*)) implies the properties of a turbulent flame at zero Mach-number. It

follows from the fact that the zero Mach-number flame bums (in first order approximation)

at constant pressure that the mean value (u*) must be a function of ¢', (p) and the mean

value {p*} a function of (, (p},u*. Constructing the pdf f as product of beta functions for

all three independent variables implies then that the variances for u* and p* are measures

for the effect of compressibility on the flow. The coupling with the mean pressure makes the

relations very complex and iterative procedures would be required for the calculation of the

moments of u* and p* in terms of the moments of u and p. Hence, an approximation in the
form

and

u*((,u) - (3.1.19)

P - po(() (3.1.20)
P'((' P)-- Pl(()- po(()

will be considered, where ul, u0, pl and Po are the bounds for internal energy and density at

a given value for the mixture fraction. If u* and p* are kept at fixed values, thermodynamic

relations ¢(¢) are produced (by interpolation in the three-dimensional table), which will

not agree with the zero Mach-number limit, where enthalpy is a linear function of mixture

fraction and the pressure is constant. However, the choice of the bounds ul ((), etc. allows

the approximation of this limit if the shape of the accessible domain corresponds to constant

pressure surfaces. The pdf f constructed with the density-weighted moments (except density)

is regarded as density-weighted pdf. It follows that the unweighted pdf is given by

/((,u,p) = (P)f((,u,p) (3.1.21)
P
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The construction of f according to (3.1.18) is based on selected moments. The moments of

mixture fraction ( are given by

and it is clear that choosing the beta function for fC in (3.1.18) violates normalisation. Hence,

the modified beta function

f¢(¢)= [_1(¢)- _0(¢)][:1(¢)- p0(¢)]
(3.1.22)

is the correct choice and it follows that the marginal pdf for mixture fraction is indeed the beta

function and the exponents tx and fl are determined by the moments _ and _,,2 according to

(3.1.6) and (3.1.7). It remains to establish the moments of u* and p* in terms of the moments

of u and p. Noting that

I[.I(C)[p=(Od_ du dpu/(_,u,p)=
duo(C) JPo(C)

L

!

1

1

I

1/ol/ol0d¢ d_* df[_0(¢) + _'(_1(¢) - _0(¢))]B(¢;o,,:)Y;(u')f;(p*)

holds, we get
-fi0

(U'*) --" 1_1 --_0
(3.1.23)

where (u*) is the mean value required for the construction of f*. The variance of u follows

in the same manner as

or in semi-implicit form

<.*'_)= : +_=-_"_-N2<_*)(_I-_o)_ <_.)_
(_- _o)_

(3.1.24)

The relations for the moments of density are somewhat different because f is density weighted.

It follws that

(pr2) + (P) /3o + (p*)(/31 /3o) (3.1.25)
(p)

and

(p,3..._.))-I-3(p'_)-I-(p)2 = p'_-I-2(p')(p'_ - _)-I- (p*)2(p,-_o)2 -I-(p"_)(pl -_o) 2 (3.1.26)
(.)
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hold. It is worth noting that the first three moments of p axe required to determine the first

two moments of p*. Two possible forms for the pdf f will be considered

f((,u,p)= B(()B(u*((,u))S(p'((,p))
(ul(()- u0(¢)][p,(_)- p0(_)] (3.1.27)

and

f(C,u,p) = B(O6(u'(('u)- (u'))6(p'((,p)- (p'))
[u,(¢)- u0(¢)][p,(¢)- p0(_')] (3.1.28)

where the second form corresponds to the zero Mach-number limit if the scalar space is chosen

appropriately. It important for the calculation of the deri_atives to note the dependence of

the various defining moments on the solution variables ((, _,,_2, _, u,,'_, (p), (p,2), (p,a)) which

axe not identical with the defining moments. First we note that

B(C)= B(C;_,C":)

holds. Likewise we get for internal energy

B(u*) = B(u*; (u*), (u"2))

but the defining moments are not solution variables. The equations (3.1.23) and (3.1.24)
show that

= F( ,L
and

(u*'_) = F(_, u"-'_, C, ¢"-_)

hold, because _1 etc. depend on _ and _"-_ via B(_'). Turning to density we get

B(p') = B(p'; (p'), (p"_))

but the defining moments are not solution variables. The equations (3.1.25) and (3.1.26)
show that

(p*) = e(<p), </2),L (''%)

and

(p.,_)= __((p),(p'_),(p'_),_,C''_)

hold, because #1 etc. depend on _ and (,,"3 via B(O.

3.1.5 Derivatives with respect to the defining moments: Beta -function.

The derivatives of a beta function with respect to the defining moments can be evaluated

using properties of the F-function and implicit differentiation. Let f¢ be the beta-function

(3.1.4). It follows that

Of Oa aft log(1 - ¢) O log(__N) }= i { log(C)+ 0¢
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holds. Note that the integrand is modified by the logarithms which put more weight to the

values of p((, u, p) at the end points of the range of (. It follows, however, that this derivative

becomes singular if the pdf is not bounded at these end points. The derivative of N appears

as combination of Gamma-functions

Olog(g) Olog(r(a)) + Olog(r(/_)) Olog(r(a +/3))
a_ a_ a_ a_

which can be expressed in terms of the q-function using the definition

d

• (z) -- _zzlog(r(z)) (3.1.29)

The @-function can be calculated according to the infinite product

oo 1 1

exp(¢(x)) = x I_(1 + _---_s)exp( x + s
s----O

which is valid for x > O. It can be recast as

oo

_(x) 1 + log(l + x) + log(H(l + x-_s)eXp( I= -7 x + s )) (3.1.30)
$=I

There are efficient and accurate alogorithms in standard software packages (such as IMSL)

available for the calculation of @. It follows that the derivative of N can be given as

O log(N) aa __ Oa __=

and the derivative of the pdf is finally established in the form

Of as __=O-_ = f{-_ o°g(¢) - _(a) + _y(s + fl)] + c, [log(1- () - ¢(fl) + _y(a + fl)]}

The derivatives of the exponents a and fl can be calculated which leads to

as _(2- 3_1 1
_ - _,,_

(3.1.31)

(3.1.32)

and

Off (1 - _)(1 - 3_) + 1 (3.1.33)

a¢ _,,2

The calculation of the derivative of the expectation of a function ¢(() with respect to the

mean mixture fraction is thus established. The result can be given in the form

0(¢) = (¢){[_(s + #) as- ¢(_)]_+ [_(_+ _)- ¢(_)I }
O_ v¢
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a,_ _(¢(0log(1+-_(¢(0 log(O)+ - 0)
a¢ ¢

The derivative with respect to the variance follows in analog manner

(3.1.34)

a(¢) _(4 040¢"% - (¢){[_(4 + #) - )10-_ + [_(4 + #) - ¢(#)1 }

where

04 O#
+_(¢(() log(()) + _(¢(()log(Z -- ())

0C 2 0C 2

a4 c:_(1-0
a_ - (,,--V

and

a#

0(-2

Note, that the angular brackets are defined as

((i-()_
_2

(n2

(3.1.35)

(3.1.36)

(3.1.37)

1 _
(¢) - d(B((; (,(,,2)6(0

The beta function B((; _, (.--i)is regarded as density-weighted pdf and it follows that (¢) =

holds. Furthermore are derivatives with respect to variables which are products with the

mean density determined according to implicit differentiation. For instance, let

then holds
0 1 0

Oz (p)a(

It is clear from the previous considerations that spatial of temporal derivatives of the

expectation of the function ¢(() can be expressed in terms of derivatives of the moments

entering the functional relation defining the pdf f. It follows that the gradient of(C) can be
expressed as follows

-DIll o,o+,cq(dp___Q)_ d(dudp ¢((,u,p)_-/Ox,_
OXOt

(3.1.38)

where the set of moments defining the pdf is denoted by {¢i, i = 1, n}. If the pdf f is the

product of beta-functions the derivatives appear in the form (3.1.21).

3.1.6 Derivatives with respect to the solution variables: Composite pdf.
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The calculation of the derivatives of the expectation of a function of the probabilisistic

scalars with respect to the solution variables is now straightforward. Consider the mean

pressure, which is given by

/ /01 /0(v)= (p) ,_ d_" ap*po+ p'(p, - po)

,(¢; _,_)f:(,,'; (,,'), (u''_))L;(p";(p*),(P"_)' (3.1.39)

where the defining moments for f* and f_ depend in turn on _ and (,,2. There are six

defining moments and seven solution variables. The calculation of quantities such as the

Jacobian matrix requires the derivatives of expectations such as (3.1.39) with respect to all

solution variables. This will be carried out in detail.

Derivative with respect to r/= _ and 77= ¢,,2.

The solution variables r/ = _ and q = ("-_ are also defining moments for the beta -

function B((). It follows from (3.1.39) that the derivative of the mean pressure with respect

to r/consists of three contributions

= dp* po + P (Pz - Po) q(p) de du" {_-ff:f; +

The first part can be evaluated at once using (3.1.31) and (3.1.34) leading to

Oa ap
°(3--!= (p)(_){[,i,(o_+ _,- ,I,(o01_+ [,1,(4+ _)- ,i,(_)]_ }Or/

aa (p log((_)) + aft (p log(1 - _)) }

fo z fo' /o z p(,,u*,p') _ FIr*alp1 (3.1.40,+(p) ,i¢ ,tu" dP'po+ p*(p, - po){B f; +-'" 0,7"

The second and third parts represent the statistical dependence of internal energy and density

on mixture fraction. Implicit differentiation leads to

Of*= a f_, a(u*)+ 0.t* O(u*'2) (3.1.41)
a,7 a(,,-) a,7 a(,,.,2) a,7

and
ag ag a(p*) ag a(p *'2) (3.1.42)
a-f =;_(p.) a,7 + a(p"'_) a,7

The coefficients can be calculated explicitely using (3.1.23) - (3.1.26).
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Derivative O(u*)/Oq

The derivative of (u*) with respect to ? will be considered first. It follows from (3.1.23)
that

a(,.,') 1- (,.,.>a,_._._0_ (,.,'> a,_,
0--'--q-"= fix - fi00q fil - fi00q (3.1.43)

holds, which contains the derivatives of u] and u0 with respect to r/. Recalling that '_1 etc.

are integrals involving B((; (, _7_), we obtain

= d¢,.,_(¢) , i = 0,1 (3.1.44)

The derivative of the beta-function with respect to the defining moment 77was established in

the previous chapter. It follows from (3.1.31) and (3.1.34) that

0fii t_a
fii{[_(a + _)- _(,_)]_+[_'(o.+_)- _(t_)]_

uq or/

] a(u.) ,OB

I
1- (u*) O_ 05

{_(u0(O log(O)+ _(u0(O log(1- 0)}

1 _
_qq (u, (_')log(1 - ¢)) }

which completes the calculation of the derivative.

+_(u_(¢) log(O)+ _ - ¢)), i = o,1 (3.1.45)

holds.The derivatives of the exponents a and fl of the beta function are given by (3.1.32) and

(3.1.33) or (3.1.36) and (3.1.37). Combining (3.1.45) and (3.1.43) leads to

(3.1.46)

O(,,"'2)la,1
The derivative of (u *a) with respect to the defining moment r/of the beta function will

be considered next. It follows from the semi-implicit equation (3.1.24) that

O(u*a)_q = -2(u*) O_q'). (ul "_-l {(u*'2) + (u *)2}_q (ua'_u°)2Uo )2

i {a_ ]. o(,,.)
(,.,,_ ,.,o)_ a,; + 2(,.,-_,- ,,o)---_..-+ 2(,.,.)(a_'''

ou_
OrI )} (3.1.47)
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holds, which contains the derivativesof density-weightedexpectations of various functions of
with respect to r/. Recalling that ul etc. are functions of _ only, it follows from (3.1.35)

that

0u_ N 0a 0#

o# (u_(¢)log(1- ¢)) (3.1.4s)+_{u_(¢)log(¢))+

holds. The derivatives of the exponents s and fl of the beta function are given by (3.1.32)

and (3.1.33). Collecting all the derivatives we get

- (a(""_) = 2{(,,')+ uo,,,- ,4 } ,_a,7 (,,,__,o)_,_,- ,_o([,_(s+#)- _(s)]_ + [,_(_+#)- _,(_)]_}

1- (u') as afl (uo
+ _; _ o {_(_0(¢)1og(¢))+ _ (¢)log(1- ¢))}

a#(_1 ¢))})+fi;-h0(u') {_-_(u,(¢)log(¢))+_ (()log(1-

(_ Os O#(,,') + (,,*'_)L.{{u')(1- ("')) {[_(s + #)- e(s)]_ + [_(s+ #)- '_(#)1_}
(,,,-,,o) 2

as O# )+_(_(¢)1og(¢)) + _(_(¢)log(1- ¢))

2(u')(1 - (u'))- {u "a) (N Off- N _0_,{[e(s+ #)- _(s)]_ + [_(s + #) - e(#)]_}
(_,-_0) 2

a_ _(_0(¢)_,(¢) log(1-¢)))+_-_ (u0 (¢)u, (¢)log(C))+

Os O#1 - <u*) + <u"'_)_ <u')(1 -<u")) _o2{[_(e + fl)_ _(e)]-_--_. + [¢2(a+ fl)- 'IJ(fl)l_-q }
(,,,-,,o) _

as2 _-_fl(u_(()log(1- ()))+_(_0(¢)1og(¢))+

completing the derivative of the variance (u *a) with respect to r/= _ or q = (,2.

(3.1.49)

Derivative O{p *) /Orl

The derivative of the defining moment (p*) with respect to the solution variable 7/ is

completely analoguous to the derivative of ft. It follows from (3.1.25) and (3.1.43) that

a(p') _ ,. - (,o') o#o _ (,o') O#, (3.L5O)
O_ #I --#0 Or] #I -- #0 Or]
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holds and using (3.1.46)we get

o(p') (t,)+
Or_ #1 -- #0 {[_(,_+ #)- ( ) + [_(,_+ #) - c,(#)]_)

1- (p') 0a ___- - {_(po(C)log(0)+ (po(01og(1-C))}Pl - Po

(p') {a_ a#
fil - _o art (p,(()log(()) + _q (px(C)log(1 - ())}

which completes the calculation of the derivative.

(3.1.51)

Derivative O(p *'2) /Oq

The derivative of the density variance (p,2) with respect to q is completely analoguous

to the derivative of the variance (u*'2). It follows from (3.1.26) and (3.1.47) that

o(p''_) _ - 4 o(p')
--2{(p') + (p,__0)_}

N

(p') + (p"_) - (p-)(i - (p')) op_
(m - po)2 0,7

--2 (p*)(1 - (p*)) -- (p.,2) oq_-_

holds and using (3.1.49) we get

1- (p*) + (p.,2)_ (p*)(1- (p'))Opo 2
(3.1.s2)

°(P"_) - 2{(p') +
Oq (p,-_0)' } ,, 7,-#o 1[_('_+ #1- + [,I,(,_+ #) - ,,i,(#)]_ }

I - (p*) 0o_ 0/3

%'P, - Po:{-ff_(p0(C)log(())+ _-_-(p0(_)log(1 - ())}

_ { _ (p ( ) log(C)) 4-pl - _0

__. ( Oa O#
(p.) + (p.,2) (p*)(1- (p')) \_{[k_(a +/9) - q(a)]-ff_ + [q(o_ +/3) -- _(fl)]_-_ }(p,- po)_

Oa 2 + __q_(pa2(C) log(1 ¢)))+_(p, (C)|og(C))

--- ( a,Ta__2(p.)(l_(p.)) (p.r2) _P'I { [t'I/(_t' + #) -- tI/(Ot)] _ "{" [XI/(O_ + #) -- _I/(#)] }
(m - po)2

0,_ O# )+_--_p (po(C)u,(C) log(C)) + _-_ (po(C)u,(¢) log(1 - C))
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0#_ (p.)+ (p.,_)_-(p')(z-(p')) _o([,r(o,+ #)- ,r(,_)]_ + [,r(,_+ #)- ,r(#)]N}
(m - Po) 2

oo (3.,.53)+-_-_- (p_ (¢) log(C)) -I-

completing the derivative of the variance (p.,2) with respect to r/= _ or 7/= ¢,,2.

Derivatives a(p)/a_ a.d a(p)/a¢''_ for the product of beta-functions.

The derivative of the mean pressure with respect to rI qan be assembled using (3.1.40)

and the form (3.1.27) for the pdfs f* and f_. The result can be given in the form

O(p____))=(p)(p){[@(ac + #,)_ @(a,)]__ + [@(a¢ + #¢)- @(#¢)] O0-_fl¢}
017

0& (v log(1- ¢))}

,, a(,.,')( a#__}

Off,, (p log(1 u*)))• oo_,,,p log(,,'))+

t,o_N, ( ){[_(o_,,+ #,,)- ,I,(_,,)]o(,.,.'_--_+ [_('_"+ #') - ,.I.,(#,,)]o(,.,*,_)

Oo_,, P log(u*))+ (P log(1- u*)))_ 0(-7r_)(7 o__ )

,, o(o') f_£){[,z.,(o_,, o,_,, o#,,to_--N-\, o + #,,)- 'I'(-,,)]_ + ['r(°_,,+ #,,)- 'I'(#o)]o-_5}

+_(Plog(p'))+ Off, (Plog(I-p')))a--fTi;

+(p)-- p Oap Oflp°(°"_) ( ){[_('_,+ #,) - _(_')1o(p.'_)+ [_(_' + #') - _'(#')1o(p"'_)O_

Oap p O#p F)))+ O(_)(p log(p*))+ O(-'_'T2) (P log(1 --
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The derivatives of the defining momentswith respect to the solution variables are given by
(3.1.46), (3.1.49), (3.1.51), and (3.1.53)and the derivatives of the exponents 4 and # with
respect to mean values are given by (3.1.32) and (3.1.33) and the derivatives with respect
to the variancesare given by (3.1.36) and (3.1.37). This completes the calculation of the
derivative of the mean pressurewith respect to q = ( or r/= _,,2.

Derivative with respect to _ = fi and q = u ''2.

The solution variables _/= fi and q = u ''2 are not defining moments for the beta -function

B(u*). They are related to the defining moments (u*) and (u *'2) by (3.1.23) and (3.1.24).

Implicit differentiation of (3.1.39) leads to

, , , p(;,,,.,p.) Bar:f;O(p)a_- (;)fodCfod_"fo dP'po+ P'(p,- po)

I
and using (3.1.24)

since only f: depends on q via (3.1.23) or (3.1.24). Further implicit differentiation of f: leads
to

Of* = Of: O(u*)+ Of: O(u ''2)
0,7 a(,,.) 0,7 o(,,.,_) o,7

The coefficients can be calculated explicitely using (3.1.23) and (3.1.24). We consider first

= fi and obtain using (3.1.23)

o(_') 1
- (3.1.56)

c3fi fil - fi0

tt -- '/2 0I N 2a )5 (_, _0)_ _ _o\(_ _ _0)_

The derivative of the pressure gradient follows now from (3.1.54) as

1

(pO(u*) p _ 4. Oa.

fi0 ) (3.1.57)fil - fi0

+ [_(4_ + #_) - _(#.)]_}

+0--_(P04" .p log(u*)) + 0__(p0/_,, p log(1 -- u')))

+(p)°(""_) ( _o_ ( ){[_,(4,,

"_ O(u''----2)04"(p log(u*)) + °')_772)0'8'4(pp log(l -- u*)))

04. O#.
+ #") - _(_')] oT4_) + [_(4. + #.) - 9(#.)1o(..,2) }
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N

and the coefficients are given by (3.1.56) and (3.1.57). We consider next r/= u ''2 and obtain

using (3.1.23) O(u*) = 0

0_,,2

and using (3.1.24)
a(u*'2) 1

a¢,,'3 (u, -_0)2

The derivative of the pressure gradient follows now from (3.1.54) as

o(v)
N

OU it 2

(3.1.59)

p 0eu 08,(:___) ( ){[,z,(_,,+ 4_,,)- _(_,,)]0(_.,2)+ [e(_,, +/_,,)- e(/3,,)]a(u.,2) }
(u, - uo)2

0/3u p )Oct,, (p log(u*)) -F log(1 - u'))
+ O{u.,_)p 0(,.,.,2)(_

and the derivatives of the exponents a and/3 are given by (3.1.36) and (3.1.37).

(3.1.60)

Derivatives with respect to q = (p), (p,2) and r/= (p,3).

The solution variables r/= (p), (p,2) and ,7 = (p,3) are not defining moments for the beta

- function B(p*). They are related to the defining moments (p*) and (p.,2) by (3.1.25) and

(3.1.26). Implicit differentiation of (3.1.39) for ,7 = (p) leads to

o(p) _ fl fx fox p(,,u',p') B(O.ff,(u')_0,7 = ( ) + (p) d( du" dP*po+ p*(p, - po)

and for r/# (p) to

O0)) _0' fo I fo x V(("u*'P') Of;= {p) d( du* dp'po + p'(Pl - po) B(()f_,(u') Or!

since only f; depends on ,7 via (3.1.25) or (3.1.26). Further implicit differentiation of f; leads

to Of; = Of; O(p') + Of; O(p "'2)

0,7 O(p') 0,7 O(p*,2) Or_

The coefficients can be calculated explicitely using (3.1.25) and (3.1.26) and obtain using

(3.1.25)
o(:) 1- _e.Z}

<")' (3.1.61)

O(p) ,_,- _o

and using (3.1.26)

o(.'') _ 1 2(.)3- (p")_ 2 W -(:) 4 +(..)) (3.1.62)
O(p) (p)2 (px %0) 2 (p)2 p=l PO (pl -- po) 2
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The derivative of the pressure gradient follows now from (3.1.54) as

O(p)

0(;I v (p)o(p*)( _ o_.- (;)+ o(p)( ){[C,(a,,+ _,,)-q,(a_)]O-_-_ + [,r(_,+ _,,)- q'(/_,,)]}

Oap .p Oflp (p log(l --p*)))

+(;)o(p) ( ){[,I,(_,,+ p,,)-,I,(a,,)]o(_,"_-----_+ [,r(a,,+ _,,)- ,I,(_,,)]o(p"_)}

o_0 v o_0 v log(l_ .)) )+ o<p.,_----_<;log(;'))+ 0<p.,_----y<; (3.1.63)
/

and the coefficients are given by (3.1.61) and (3.1.62). We consider next r/= (p,2) and obtain

using (3.1.25)

o(p') 1
- (3.1.64)0(¢_) (p)(_- _o)

and using (3.1.26)

o(0'2) - (01-_012 (p)(_1-¢0) (0")+ (pl-o0)_/
(3.1.65)

The derivative of the pressure gradient follows now from (3.1.63) as

Oap O_p

Oat, .P 08o (V log(1 -- p*)))+0-_'_( P log(p*)) + 0--_ p

O(p*'_) ( Oa, O/3p+(p) o(o,_) (_){[,I,(a,,+ ,8,,)- ,,r(_,,)]o(7) + [,,r(a,,+ _',,)- _(,8,,)1o(p*'_)}

4 O(p.,2 )Oat, (Pp log(p')) + O(p.,2 )Oflt' (Pp log(1 -- p*))) (3.1.66)

and the coemcients are given by (3.1.64) and (3.1.65). The derivatives of the exponents a

and fl are given by (3.1.36) and (3.1.37).

Finally, r/= (p,3) is considered. We obtain using (3.1.25)
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and using (3.1.26)

O(p"'2)_ 1 (3.1.67)
O(P'3) (p)(p,-':"Po)2

The derivative of the pressure gradient follows now from (3.1.63) as

(_ aa. 0#.a(p) _ ( ){[_(_. + #.) _ _(_.)] o(p*'2) + [_(_. + #.) _ _(#.)] 0(p"'2)}
(p,- po)2o(p'_)

_o,p O#p \

(P--log(p'))+ p Iog(1- p')))-_o(p.,2)p a<p"'2)<;
(3.1.68)

The derivatives of the exponents (_ and fl are given by (3.1.36) and (3.1.37).

In this section it was shown that pdfs for three scalar variables describing the local

thermodynamic state in a compressible reacting flow can be constructed from a selected set of

moments of order three or less. Statistical independence was assumed for the image variables

in a transformed space, that reduces approximately to the properties of reacting flows at

zero Mach-number if two of the image variables are kept at fixed values. All derivatives of

expectations of arbitrary functions of the scalars with respect to the moments in physical

space used for the construction of the pdf were calculated analytically.
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3.2. Nonreacting Joint PDF Equation

In this section the objectives are to analyze the compressible flow equations, to

understand the role of pressure and its fluctuations on turbulence dynamics, and to see if

this phenomenon is similar or related to that in the incompressible flowfields. To do this, a

theoretical joint probability density function formalism is developed for velocity

components and thermodynamic variables in nonreacting turbulent compressible
flowfields. Utilizing the conservations of mass, momentum, and the second law of

thermodynamics and two general state equations, a differential transport equation can be

derived for the joint PDF of velocity components, entropy, and pressure. A summary of this
derivation and subsequent analysis is given below.

A nonreacting compressible flowfield is governed by a set of equations consisting of

the conservation of mass equation (Eq. 1.1.4), the conservation of momentum equation

(Eq. 1.1.6), and a transport equation for entropy given as

I

I

!

r

(3.2.1)

where Eij = 1/2(0Ui/ax j + aUj/axi) is the strain rate tensor. The general forms of
thermodynamic state relations are

p = p(P,S) (3.2.2)

T = T(P,S) (3.3.3)

The specific functional forms of state relations depend on the gas under consideration and

are left undefined to keep the analysis general and applicable to ideal as well as real gases.

The total changes in density and temperature in terms of thermodynamic variables are
given as

I J la l8p dP + _-_ dS
dp- _" S p

(3.2.4)

I ] [aTj8T dP + _-_ dSdT- s p (3.2.5)

The partial derivative (ap/ap)s is defined as the inverse of the square of the speed of sound

propagation in the medium and goes to zero for incompressible flowfields. The other

partial derivatives can be related to the well-known thermodynamic coefficients using

Maxwell relationships. It should be noted that only three of the thermodynamic partial

derivatives are independent and the rest can be expressed in terms of those three.
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Theknowledgeof the velocity,pressure,andentropy fields,U(x_,t), S(x_,t) and P(x_,t), at

any point in a compressible flowfield completely determines the state of the fluid. In a

turbulent field these quantities can be viewed as random fields. The joint probability

density function of these random fields at any given point in space and time is denoted by

f(_, q, E; x_,t) where _, q, and E are dummy variables denoting the value spaces of velocity,

entropy, and pressure respectively. The domain of these value spaces is infinite for all of the

random fields. The joint PDF is a nonnegative function of _, I/, and E at any point (x_,t), and

it should satisfy the following property,

OO

I f(_l' _2' _3' q' _) d_l d_2 d_3 dq dE - 1 (3.2.6)

Also, since the expectation (ensemble average) of velocity components, pressure, and

entropy are finite, the above function should go to zero faster than its arguments go to

infinity. In general, if Q is a function of flowfield quantities, i.e., Q = Q (U_(x,t), S(x_,t), P(x_,t)),

then

OO

<Q(U_,S,P)>- I O(_,n,E) f(_,n,E; x,t) d_ dn dE
m

The expectation of any variable, such as U i, is given as

(3.2.7)

O0

<Ui(-x't)>" I _i f(_i'_2'_3 '_'E;x't) d_id_2d_3d_dE

mOO

i - I, 2, 3

(3.2.8)

To obtain a transport equation for the above joint PDF, define a "fine-grained" function

3

g - 6(S(x,t) - s) 6(P(x,t) - P) n 6(Ui(_x,t)
- i-I

- ui);

then the expectation of this function is given as
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O0

3

<g(x,t)>- I 6(_-s) 6((-p) n 6(_i-ui)
i-1

f (_,_, _;x,t) d_d_d_

w_ch based on the definitionofde]m functions_ reduced to

(3.2.9)

<g> = f (u, s, p; x_,t) (3.2.10)

The time and space derivatives of the fine-grained function are obtained using the chain rule

8g _ Og OU.. ____ a_! as ag oP
8t 0u i 0t Os Ot Op Ot

(3.2.11)

O.._g = _ a_._g 8Ui ag aS ag aP

ax. au. ax. aS ax. ap ax.
3 z 3 J 3

(3.2.12)

Multiplying both sides of Equation (3.2.12) by Uj and adding it to Equation (3.2.11) the
following equation is obtained

Dg I ag DUi 8g DS + ag Dp ]
D-_ " - 8ui Dt + a--sD-_ 8p Dt

(3.2.13)

where

a( ) a( )
D( )/Dt = -- + U.

at 3 axj

Multiplying the above equation by density, p, and the conservation of mass equation by g
and adding obtains the following equation

a a ag DUi

(Pg) (Pg":L)" au- (Pb-c)

ag DS ag DP
+ F_ (p b-_) + _'_ (P 5-_)

(3.2.14)
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The expectation of the above equation is taken to obtain a transport equation for the joint

PDF. The expectation of the first term is given as

+I<_-_(pg)> - _ P(8'_)
6 (j_-u) 6 (8-s) 6 ((-p)

(3.2.15)

f (_, _, _;x,t) d[tdqd_

Therefore,

% a af (3.2 16)

< _ (Pg)> " a-_ [p(s,p) f(u,s,p;x,t)] ) - p(s,p) a'-'t

Similarly,

<a___(pUjg)> . a af
ax. 8x_ [p(s,p) ujf(u,s,p;x,t)] -p(s,p) uj ax_ (3.2.17)

]

Substituting from Equation (3.2.16) and (3.2.17) for the left-hand terms of expectation of

Equation (3.2.14) and utilizing the conservation equations (1.1.6) and (3.2.1) for the total

derivatives appearing on the right-hand of Equation (3.2.14), the following transport

equation is obtained for the joint PDF, f,

8P a TiJ + PGi) >af 8f . ag (3.2.18)

ag 1 K aT 2 % alnT) ag DP

+ < _ (T TiJ £ij + V (_i) + -- (r )> + < (P

The objective is to obtain a partial differential equation expressing the joint PDF, f, in

terms of its arguments u i, p, and s. Therefore, the right-hand side of Equation (3.2.18) must

be expanded to obtain terms in the desirable form. The momentum and entropy transport

equations have been used to replace the material derivatives of velocity and entropy.
However, the choice of a transport equation for pressure is not very clear. One obvious

method is to use the thermodynamic state Equation (3.2.2) to relate pressure to density and

entropy. Here the transport equation for enthalpy was used to obtain a transport equation

for pressure, i.e.,

DP Dh a aT (3.2.19)

D-_ " p Dt 8xj (K _j) - rij Eij
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After substitution of this term in the right-hand side of Equation (3.2.18), the expectation of

each term on the right-hand side of Equation (3.2.18) should be evaluated. This procedure is

straightforward, (Ref. 37), but rather lengthy, and the final equation contains over forty

terms on the right-hand side. Since the primary focus of this study is on investigating the

role of pressure, the terms containing the effects of vicosity and heat conduction are

neglected. This simplification results in the following equation for the variation of the

probability density function with respect to velocity, entropy, and pressure at any given

point in space and time.

af a f. / _2f a2 ¢IUj

p(s,p)_ + p(s,p)uj axj t-P axi_ui _UiaUj <Pg %-_i>

a2 a2 aP af ]
<pg %s > <Pg--> + Gi p(s,p)

auias _i auiaP axi

(3.2.20)

af %f 2 a2f %2f

+220P +2 2°°i +__L2Ds>tvlsooos
+ _--_P ngD-t> + au--_ p hgD_.._> _ a__<^__Dp. + +8p ap Y'*Y_ apas p ng _ j terms

The above equation is a linear partial differential equation for the single-point joint PDF,

f(u_,s,p;x_,t). In three-dimensional physical space, f is a function of nine independent

variables, and the above equation represents the changes in this function caused by changes

in these nine dimensions. Those terms appearing in ensemble average bracket signs, <- >,

are nonclosed and relate this single-point joint PDF to other multi-point joint PDF's. These

terms must be modeled. The first group of terms appearing on the right-hand of the PDF

transport equation are due to the momentum transport, and the second group of terms are

due to the pressure transport. The entropy transport causes changes in the joint PDF only

through molecular diffusion effects and all its contributions are included in the neglected

viscous terms. However, entropy gradients (or hot spots) also affect the nature of the joint

PDF through changes in pressure and other thermodynamic quantities. This statement is

supported by the presence of the nonclosed terms involving the spatial and temporal

variation of entropy in the above equation. These nonviscous entropy effects on the joint

PDF can be interpreted as the contribution of temperature spottiness in modifying the joint
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PDFand hence they effect the acoustic and dynamic nature of the flowfield. To be able to

determine the extent of such effects and the effect of other nonclosed terms one must model

them in terms of the single-point joint PDF. Such modeling requires information or

assumptions regarding the nature of multi-point joint probability density functions (Ref. 11)

and their relation to the above function.

The presence of the closed form terms makes it possible to investigate the nature of the

above equation, and the effect that these terms have on it. Before investigating the effect of

closed form terms it should be noted that the above form of the PDF equation is drastically

different from its incompressible counterpart. It is a common practice to use the turbulence

models developed for incompressible flowfields in the modeling of turbulent compressible

flowfields. Therefore, it is important to discuss the relation of the above equation to its

incompressible counterpart.

For an incompressible flowfield the density of a fluid particle stays constant as one

follows this fluid particle. This assumption implies that the conservation of mass reduces to

D_pp. 0 (3.2.21)
Dt

From a thermodynamic point of view this case implies a zero change in the thermodynamic

quantities in response to a finite change in pressure. This results in an infinite value of the

speed of sound defined by

a - (3.2.22)
s

In other words, the change in pressure does not cause a change of volume and subsequent

storage of energy in the internal energy mode. Instead, the only role that the change of

pressure plays is in the transportation of the fluid particle such that the conservation of

internal energy for an incompressible inviscid nonheat-conducting flowfield reduces to

De. 0 (3.2.23)
Dt

However, the conservation of kinetic (mechanical) energy shows the role of pressure and is

given as

1

D (5 UiUi) aP

- pG.U - Ui _ (3.2.24)P Dt x i

Therefore, there is a decoupling between the momentum equation and the conservation of

energy equation. Pressure is now defined as a forcing function which creates a flowfield in

which the velocity field satisfies the condition of zero divergence in addition to the



appropriate boundary conditions. This means that given the velocity field satisfying the

appropriate boundary conditions, and with zero divergence, the pressure can be

determined exactly. Statistically, pressure is no longer a random variable but a function of

the velocity field with an exact functional relationship given by the following equation:

P(x,t) - - _ l_x_xl ayj ayi dYldY2dY3
(3.2.25)

The PDF is no longer a function of pressure and the role of entropy appears only through

viscous terms. The single-point joint PDF transport equation for incompressible flowfields
is given by (Ref. 37)

Of af _ <i 0P ag _f
a-_ + uj - __ . .

p axi 0ui > + Gi + viscous terms (3 2 26)aui

The integral dependence of pressure on the velocity field links the single-point PDF to every

point in the flowfield instantaneously. In contrast, the compressible PDF transport equation

includes closed form terms that display the local effect of pressure on the function f. These
terms will be studied next.

Assuming perfect gas behavior and neglecting all nonclosed (multi-point) and
gravitation terms, Equation (3.2.20) reduces to

af af . FP2 02f FP 02f 0f

a--_+ ui _ 2hp2 axiau i T (%-p_ + u. -) (3.2.27)I apax i

Since the effects of entropy are only present in neglected nonclosed terms, the above

equation can be simplified by considering isentropic processes, i.e.,

V-__! Z
l

h - h (P/Pr) Y and P " Pr (P/Pr)Yr

Utilizing this assumption and integrating the above equation over pressure and entropy

spac_ the following equation is obtained for the probability density function of the velocity
field f

,, ,, = = F-1

+ q axiau i

where

f (u,s,p;x,t) dpds (3.2.28)
m

-89



OO OO

f (U, s,p;x,t) dpds

and

1

1 2 rY/Pr hA - a P
r 2 r r

a r is the referenced speed of sound propagation. This equation can be thought of as the

simplest possible counterpart of the incompressible PDF equation, Equation (3.2.26). It

indicates a strong local coupling between velocity and pressure fields which is dependent

on the speed of sound. However, it is expected that as the speed of sound approaches large

values this local coupling reduces, and the multi-point nonclosed terms become the only

link between pressure and velocity fields. Therefore, this term is only active at high Mach

numbers and acts as a pressure dependent diffusion.

It should be emphasized that Equation (3.2.27) is a closed form linear partial

differential equation for the PDF of the velocity, pressure, and entropy fields, and given

appropriate boundary conditions, it can be solved for f(u,s,p;x,t). Therefore, this equation

can be investigated to see under what conditions, neglecting the nonclosed terms, there

exists a unique solution for this equation. This analysis indicates that the principle of the

hybrid stochastic model is valid as long as the local effects created by compressibility are

included in the turbulence modeling of the velocity field.
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3.3 Effects of discontinuities in supersonic flows with large fluctuations.

The interaction of shocks with turbulence poses a formidable problem of practical im-

portance (Billig and Dugger Ref.69). So far, mostly moment closures (Kollmann, Haminh

and Vandromme Ref.70) have been used to predict mean fields in the region of interaction

and mean shock properties and location were calculated with shock-capturing techniques.

The application of pdf methods to supersonic flows with embedded shocks is a new area.

Since shocks are near discontinuities for finite Reynolds/Peclet numbers (and approach gen-

uine discontinuities as Reynolds/Peclet numbers go to infinity), it is natural to ask what the

structure of the pdf equation will be in the presence of discontinuities. For the investigation

of this question, a single balance equation for a scalar quantity _(z, t) is considered. The

equation
O_ OF

"_+ Oz S=0 ,if(x,0)= _0(x) (3.3.1)

where F(¢, x, t) is the flux and S(¢, x, t) the source term. This equation admits discontinuous

solution in its weak form (Majda Ref.71). If the initial condition is chosen randomly from a

set of differentiable functions, then the statistical properties of the solution can be described

in terms of the pdf fl (_2; z, t).

] - fx = (])

If the flux F and the source S are local functions of (I,, and if the solution (I, remains at least

once continuously differentiable, then the pdf equation can be obtained in the form

c9fl OF cgfl ___ 02 F cge) ^[ + + = (3.3.2)

However, the right hand side is nonzero if the flux F is a nonlinear function of _. Its structure .

is not suited for the analysis of discontinuities and a different method must be used for this

case. The theory of stochastic differential equations allows analysis of the scalar • taken at

a fixed location x. The temporal increment of ¢ is then

d_ = d@o + dP + dW (3.3.3)

where d(I'0 is the deterministic and differentiable part of d¢, dP the increment due to a

jump process and dW the increment due to a continuous but not differentiable process. The

differential equation (3.3.1) leads to

OF
d_ = -mdt + Sdt

Oz

The source term Sdt can now be viewed as the sum

Sdt = Sodt + dW (3.3.4)
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of the differentiable contribution Sodt and a continuous but non-differentiable part dW. The

flux term requires a closer look. If F(@) depends on @ in a nonlinear fashion such that

discontinuities form in finite time from smooth initial conditions, then there exist random and

discrete time instances when discontinuities cross the fixed location x. Hence, the derivative

of the flux is the sum of a singular and a continuous part

OF OF

o-7= _ I+],_(_- t,) + (-gZx)<
ti<t

where [¢]i denotes the jump height at time ti and (_.F)< the continuous part. Hence,

dP -- _ [Vl,dt_(t- _,) (3.3.5)
t_t

is the increment of a jump process and the increments in the stochastic differential equation

are now identified as

d_o - (& - (_-)c)dt

along with (3.3.4) and (3.3.5).

given by

The pdf equation for the solution process of (3.3.3) is then

o,, £ 0, ,0, 'iOt + {(S°-(_x)<)fl}-2(9_2{BA}+-{r di'fi(i')T(¢'--* (I)) - A} (3.3.6)

if dW is specialized to a Wiener process. It becomes clear by inspection of this equation

that the discontinuities crossing a given location x affect the evolution equation for the pdf

in integral form appropriate for jump processes. This integral requires the probability of

a jump from (I)' to (I), denoted by T(@' _ (I)), and the time scale r for the appearance of

discontinuities at x. The pdf equation derived from (3.3.3) does not provide this information,

because only a single location x is considered and x-derivatives constitute therefore new

unknowns.

This example showed that the appearance of shock waves with random location and

strength produces an integral contribution to the pdf equation. It can be expected that the

time scale and the transition pdf T((I)' _ (I)) are functionals of the flow variables. The explicit

form of this functional relation is unknown at present.
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CHAPTER 4. MODELING AND SOLUTION OF A TRANSPORT

EQUATION FOR A JOINT PDF.

Task 5 of the contract was devoted to the study of possible formulations of the pdf method

for compressible turbulent flows with combustion reactions and the development of closure

models for this type of flow. The pdf method can be based on the transport equation for the

pdf of thermo-chemical scalars plus variables measuring the rate of relative volume expansion

or the material derivative of the pressure. The pdf approach offers the possibility of treating

chemical non-equilibrium in rigorous fashion, which is particularly important for high speed

flows characterized by high shearing rates and short residence times. The progress achieved

in the development of a closure model for the pdf equation and the successful application of

this model to supersonic hydrogen flames will be reported in detail.

4.1 Pdf equation.

'l"hrbulent flow at supersonic speed can be modified significantly by compressibility and

the interaction with shocks created outside the turbulent flow field and random shocks (called

shocklets, Johnson et al. Ref.72) generated in supersonic turbulent shear layers. Pdf methods

can be adapted to cope with the effects of compressibility including random discontinuities

and combustion. We consider the case of infinitely fast reactions, in which three variables

determine the local state: Mixture fraction, pressure and enthalpy. Pressure can vary sig-

nificantly in supersonic flows and enthalpy is not conserved due to frictional heating in high

shear regions. Hence, no further simplification, as in the case of low Mach number subsonic

flames, is possible. The single point pdf ]'1 is then set up for the velocity y., density p or a

local function of density such as log(p) which will be used below, internal energy u, relative

rate of volume expansion D and mixture fraction

fa(v,d,u,_,rl;z,t)=- (6(v--v)6(p-d)6(e-u)6(D-_)6(_-rl)l (4.1.1)

The transport equation for this pdf can be obtained using standard methods and emerges in
the form

Of 1 c3 _z_ 10r,_#^d(_-_ft_ +vo0--_)= Ov {-(__,.,f) + 7:['ee(-O-x-f#3x#f) + Bd(f_])}

_._ - 11¢2 ^ 3' Oqaa 7 ldu(fl+7( 7 1)._..e(q_/) Pe'c3x,_l ]_,}+ (d2¢f_)- _{ cv - -

O { 1 O lOT_# ] O_ Ov#. Of_. ( O _ Op ],. O O 0¢ --o--( ) -
(4.1.2)

Mean thermodynamic properties follow from the pdf fl by integration. The mean pressure
for instance is given by

(p) = / dd/ du / dqp(d,u,_l)fa(d,u,_?)
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wherep(d, u, r/) denotes the local relation of pressure to density, internal energy and mixture

fraction. The calculation of this type of local relation was discussed in the first report.

4.2 Closure model for the pdf equation.

The closure model to be considered refers to the pdf equation resulting from (4.1.2) by

integration over velocity space and introduction of the density-weighted pdf fl defined by

]1 -- p(_x," ",q_t)fl(qol,"" ,_t;x,t) (4.2.1)
(P)

where _ corresponds to the scalar variables (p, e, D, () and l = 4. The integrated pdf transport

equatio--n for the set of I thermo-chemical variables follows from (4.1.2) for high Reynolds

numbers in the form

(P){-&-+""bT_ _d('_¢f')}+

o oo_,o,,_,]) + ( ( )])} _ ((p)(,,ol,I,j= @.fi)

0 7 ic3q,_, 0 1 0 1_)])_ O(£(pF_z )] ) (4.2.2)

The terms on the right hand side can be shown to contain dominant terms describing turbulent

mixing in scalar space which appear in the form

and the scalar dissipation rates eli in the conditional expectations are defined by

(4.2.4)

with equal diffusivities Fi = I'j "- r. Note that no such term acts in the first scalar direction

which corresponds to the variation of density.

4.2.1 Mixing Model.

Any closure model for the mixing process described by (4.2.4) should share as many

properties as possible with the exact term. It should preserve normalisation and mean values

and decrease variances and covariances. The pdf should remain nonnegative and should not

spread outside the domain of allowable states. The pair interaction model for the l - 1 (note
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that one of the scalars does not mix as will be explained in the next chapter) scalar variables
is defined by

& ]mi= ........ (4.2.5)

It is assumed that all scalars are appropriately normalized such that the scalar space (set of

all realizable states) _ is a subset of an l - 1-dimensional cube. It should be noted that

may have intricate boundaries as a consequence of realizability conditions. The transition

pdf T(_',._", _,) must satisfy the requirements

T(__',__",E) = T(9', 9", _' + __" - E) (4.2.6)

and

T(_' ¢p",__) 0 for ¢:_. _" ' _"", = lvt_,W ) (4.2.7)

The central part of the condition (4.9) is the construction of the neighboUrhood N(_',_")

which is the interval [9', _"] in the single scalar case. N can be at most the cube Ct-1 - {_ :

_i E [_, _p_'], i = 2, l} defined by _' and _" for pairwise interaction. Realizability requires
that the mixed states are in _, hence

N C Ct-1 I"1_ (4.2.8)

must hold. Symmetry

_0 (/g ¢, _' + _" -__ E N (4.2.9)

must be imposed to insure the properties of a mixing model, b'hrthermore is T pdf with

respect to

f d_._T(_', _",__)= 1 (4.2.10)

Conditions (4.2.6)-(4.2.10) do not define the mixing model uniquely but represent a class of'

models. It is important to realize that the structure of the scalar domain _ modifies the

neighbourhood N unless N is reduced to the line connecting _' and _p". If _' and _" are

close to the boundary of _ the neighbourhood is essentially the _onnectmg linedue to _.2.8),

but if the points are inside _ and far away from its boundary then may N be the cube Ct-:.

The transition pdf T is set up as

where

T, , II '_
tE ,5_ , E) = G(_)H(._.', c2", tP) (4.2.11)

1_ _ m_t(N) for _p _ N(_',_") (4.2.12)
H(.__', ¢p", _) = 0 otherwise

and yt-l(g) is the l- 1-dimensional volume of N(sp',._" ) and ( denotes the centered variable

2 1 ,

(i - yt_l(g)r.3r [_i - 5(_ai + _7)], i = 2,1 (4.2.13)
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It follows that T satisfies

dc_G(¢_)= 2_-_
(4.2.14)

and G(__)= G(-_() (4.2.15)

The present choice for the function G(_) is a constant determined by the condition (4.2.14).

This concludes the construction of the mixing model for (4.2.2).

4.2.2 Compressibility Effects.

The closure model representing the effects of compressibility is most conveniently for-

mulated in the Lagrangean frame in the form of stochastic differential equations. The basic

laws are written in abbreviated form

dlog.___._p_ -D (4.2.16)
dt

d---D-D= QD (4.2.17)
dt

d___EE=QE (4.2.18)
dt

d_._ = Q_ (4.2.19)
dt

where d/dt denotes the material derivative and D = V- v the relative rate of volume expan-

sion. The right hand side terms are conveniently set up in the Eulerian frame (or implicit

Lagrangean). The basic laws lead to the explicit form of the Qi given by

1 0 1Ova# 0 .10p)_ OvaOv# @qa (4.2.20)'
Q" = R_axo(p ax_) - Y_-J_tTYZ_ 0x_ axo + a_--:

where qo denotes the energy flux vector,

1 7 Oq_
(4.2.21)

where ¢ is the dissipation function,

1 0 , F0_) (4.2.22)
Q_=R--i_y_jtp

The general form of the closure model for the pdf equation given above (47) (which contains

the dynamics of the variables density, internal energy, relative rate of volume expansion and

mixture fraction) is set up in terms of the stochastic differential equation

dYi = Aidt + biidWi + dJi (4.2.23)
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wheredWi is the increment of a normalized random process (such as the Wiener process) and

dJi is the increment corresponding to a jump process. The closure for the equations (4.2.16)
- (4.2.19) will now be discussed in detail.

A. The time rate of change of the relative rate of volume expansion consists of three con-

tributions: The increment due molecular transport which is regarded as mixing, the increment

due to the passage of isentropic compression and expansion waves past the material point

considered, and the passage of random shock waves past. The first contribution ADmiz is

represented by the mixing model. It can be shown that the viscous term in (4.2.20) implies in-

deed that D is subject to diffusion. Hence will D participate in the mixing model described in

the previous chapter The second contribution is modelled according to an Ornstein-Uhlenbeck
process

r z I AtADi, = {%lf(Ma) At}2rl - c,2f(_ a)'-_-(D -(D)) (4.2.24)

where cpl = 1.0 and cp2 = 0.5 are constants and

f(Mo)= M:

is an empirical function of the local Mach-number. It ensures that the increment of D vanishes

as the Mach-number goes to zero. The first part of AD is a Wiener process (r/is a Gaussian

random variable with zero mean and unit variance) representing the random stirring effect of

isentropic compression and expansion waves moving past the point considered. The second

part is a drift term ensuring the existence of a steady state. Finally 7" is the turbulent time

scale provided by the second order closure. The model for QD follows as

QoAtAADmix + ADi, + AD,h (4.2.25)

where the last term represents the random occurrence of shocks. This contribution is nearly

singular and corresponds to the derivative of a Dirac-pseudofunction in the inviscid limit.

There is no model for it at present and random shocks will be taken into account in the mass
balance discussed below.

B. Mass balance (4..16) does not require closure and contains only a drift term

dlog p = -D dt (4.2.26)

as long as the relative rate of volume expansion remains sufficiently smooth. The case of

random shocks leads to a singularity for D and will be treated as separate contribution to

dlog(p)/dt in the form of a jump process. If the local Mach-number is greater than unity,

shocks may appear with the maximal strength given by the normal shock relation

f M -I
G(M,) = _ 1+-_7_M2 for M, > 1 (4.2.27)

0 otherwise.

and the increment d J1 for the jump process representing the random shocks is modelled by

_N dt
dJ, = G(M,) _ ,(v)r/ (4.2.28)
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whereN0(@) denotes a nonegative integer random variable representing the number of shocks

arriving at the material point in @ dimensionless time units and 0 < ,7 < 1 is the random

variable giving the dimensionless shock strength. The current model for N,(_b) is a Poisson

process and ,7 is a random variable with uniform distribution. The complete increment for

the logarithm of density is givrn by

A log p'- - DAt + d J1 + ADdi_ (4.2.29)

where the last contribution is due to frictional heating at constant pressure to be discussed

below. This contribution is given by

=

where Au is the increment of internal energy due to frictional heating. Finally, note that

log p does not participate in the mixing process.
C. The increment for the internal energy consists of several contributions

1

OgAt--'Au,niz + Auis + {-7(7 - 1)M_(1 + p)D + -_e7(7 - 1)M_q_}At + Aush (4.2.30)

The first part is due to heat conduction and is therefore part of the mixing model applied

to internal energy. The second part of the increment is due to the isentropic expansion and

compression waves passing the point considered and can be written as

where Ap = -DAt denotes the change of density as a result of the change in the relative

rate of volume expansion. The third part contains the pressure work term and the frictional

heating contribution. The dissipation function consists of

for flows of boundary layer type.

The last contribution is due to the random arrival of shocks at the material point con-

sidered.
D. The increment for the mixture fraction has only the mixing contribution.

4.3 Prediction of supersonic hydrogen flames.

The closure model developed in the previous chapter was applied to the prediction of

supersonic hydrogen flames burning in coflowing stream of air. The flow configuration was

a round H2 jet with a coflowing stream of air at higher temperature than the fuel. The

boundary conditions and the nozzle geometry were chosen according to the first test case
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of Evans et al. Ref.73: The exit properties of the fuel//2 axe To = 251°K, Mach number

Ma = 2.0 and pressure p0 = 0.1 MPa and the exit properties of the coflowing air stream axe

given by Te = 1495°K, Mach number Ma = 1.9 and the same pressure as the fuel stream. The

geometrical arrangement is shown in riga according to Evans et al. Ref.73. The calculation

of the turbulent nonpremixed flame is carried out with the hybrid method developed by
Chen and Kollmann Ref.74. The first step in the solution procedure is the calculation of the

thermo-chemical properties, which are stored in a table for the later use in the solution of
the pdf equation.

4.3.1 Thermo-Chemical Properties.

The thermo-chemical properties of the reacting mixture of/-/2 and air are determined

from the condition of chemical equilibrium constrained with pressure and internal energy.

This assumption is unrealistic for many situations in supersonic flows, but it is the logical

first step in the development of prediction models for such flows. The extension to chemical

non-equilibrium has been carried out for zero Mach-number flames (see Chen and Kollmann,

Ref.74) and, once the questions concerning compressibility effects on the turbulence structure

have been sorted out, the results obtained for zero Mach-number flames can be applied to
supersonic flows.

The fuel considered in the present prediction was a mixture of hydrogen and nitrogen
(YH2 = 0.22335 and Y/v2 = 0.77665, in order to raise the stoichiometric value of mixture

fraction from (,t = 0.0283 for pure hydrogen fuel to (,t = 0.113. The pure hydrogen case was

also considered but only results for the former case will be discussed. The thermo-chemical

properties were calculated with a standard equilibrium code (STANJAN) and a selected set of

results axe shown in fig.2 to fig.5. The available thermodynamic data started at a temperature

of T = 300°K which implies that the fuel temperature could not be reached in the equilibrium

code and T = 301°K was used instead. This implies that a significant discrepancy in density

and temperature must be expected in the initial region. All the results axe plotted for the

upper limit of density (fig.2,3,5) or the upper limit of internal energy (rigA). The boundaries of.

the thermo-chemical domain were established to be approximately isobaric. The importance

of this property for prescribed pdf methods was discussed in chapter 3.1. The temperature

as function of mixture fraction ( and internal energy u in fig.2 shows the expected maximum

near the stoichiometric value of (. The variation of T with u for constant ( is essentially due

to compression or expansion since composition and density are constant for constant (. The

pressure p((, u) in fig.3 shows that the lower boundary is close to an isobaric line but the

upper boundary shows a moderate variation of pressure with mixture fraction. The pressure

as function of mixture fraction and density in fig.4 (note that density is normalized with the

local extremal values Pmin((), Pmaz(() by

P* _ p- p,ni,_ (4.3.1)
Pma_: -- Pmin

for the purpose of plotting) illustrates the strong influence of the flame front ( = (,t. Finally,

fig.5 shows the variation of a radical mass fraction (component OH) with mixture fraction

and internal energy at the upper limit for density.
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4.3.2 Velocity Field: Second Order Closure.

The statistical properties of the velocity field are determined from the solution of a

second order moment closure (see Dibble et al., Ref.41 for details). The mean velocity fi(x, r)

at x/D = 6.56 in fig.6 reflects the initial conditions. The comparison of r,_(p) with the

experiments of Evans et al. Ref.73 in fig.7 at x/D = 6.56 and in fig.8 at x/D = 26.2 proves

reasonable agreement given the uncertainties in the conditions at the entrance section. The

same holds for the comparison of the Pitot pressure with the experiment in fig.9 except near

the axis where the calculated pressure is too high. The Reynolds stress components in fig.10

and the dissipation rate in fig.ll at x/D = 6.56 are qualitatively correct but no experimental

values are available for comparison. The same holds true for the station x/D = 26.2 in fig.12

to fig.14. The profiles are fully developed and similar to the incompressible case.

4.3.3 Scalar Field: PDF Model.

The prediction of the pdf f(_, u, p; x, r) at two cross sections will be presented in detail.

The mean profiles for x/D = 6.56 in fig.15 to fig.19 prove that the jet is essentially a circular

mixing layer. There exists clearly a core region and the maximal temperature is reached in

the high shear region off the symmetry axis. The profiles for auto- and cross-correlations in

fig.20 to fig.27 at this station show that mixture fraction and internal energy are negatively

correlated (fig.21) and that the correlation of mixture fraction and density (fig.22) is the

sign opposite to the correlation of internal energy and density (fig.25) and both change signs

with increasing distance from the symmetry axis. The double peaks in the auto-correlations

indicate the properties of a mixing layer. The information of the various pdfs is contained

in fig.28 to fig.45 for the station x/D = 6.56. Two radial stations were selected to show the

variation of the pdf as the shear region is traversed. At riD - 0.14 we note that the one-

dimensional pdf of mixture fraction (fig.28) and internal energy (fig.29) axe quite different

which is due to the influence of compressibility. The Ornstein-Uhlenbeck process described

in chapter 4.2 as model for the random fluctuations of the relative rate of volume expansion '

lead sto a broadening of the pdf for thermodynamic variables which would be related locally

in incompressible flows. This effect leads also to the differences in one-dimensional pdfs.

The pdf for density in fig.30 shows the incursion of hot combustion products as long tail at

low values of density. The pdf of relative rate of volume expansion D in fig.31 is close to

a Gaussian, but the two-dimensional pdf in fig.33 for density and D proves that D is not a

Gaussian phenomenon despite the Gaussian appearance of the marginal pdf. The pdf for the

thermodynamic variables such as density and internal energy in fig.34 shows the adherence

to the equilibrium line with spreading due to compressibility effects.

The results for the station x/D = 30.14 in fig.46 to fig.73 documents the development

of the flow from a circular mixing layer to a round jet. The mean profiles in fig.46 to fig.48

show the decay of the mixture fraction and the spreading of the jet. The auto- and cross-

correlations in fig.49 to fig.56 bring to light the properties of jets in contrast to the initial

behaviour as mixing layers. No sign change is observed for the cross-correlations of mixture

fraction and internal energy (fig.50) and mixture fraction and density (fig.51). The same

holds true for density and internal energy in fig.54. The one-dimensional pdfs in fig.57 to
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fig.68 allow the detailed study of the radial development. The most interesting result is the
appearanceof a double peak in the pdf for internal energy at riD = 6.55 in fig.66. This

can be attributed to the intermittent nature of the flow simulated stochastically, where the

right peak corresponds to entrained air. A similar property can be seen in the pdf of density

at the same station in fig.67. The entrained air appears here as a distinct spike at the high

density. The two-dimensional pdfs ia fig.69 to fig.73 show less spread around the equilibrium
lines which indicates smaller compressibility effects.

It was shown that pdfs for three scalar variables describing the local thermodynamic

state in a compressible reacting flow can be determined as solutions of model equation that

simulates the effects of convection, turbulent diffusion, chemical reactions and reversible and

irreversible compression and expansion processes occuring randomly in a turbulent flow at

high speed. The limited amount of experimental information does not allow to draw a final

conclusion concerning the accuracy of the claculations, but it is clear that pdf predictions

of compressible reacting flows are feasible. There are, however, several problems awaiting

solution. In particular the role of the fluctuating pressure containing several different modes

(acoustic mode, entropy mode) and the significance of chemical non-equilibrium need to be

investigated. Pdf methods are especially well suited for the latter because they allow rigorous
treatment of nonlinear and local processes.

101



.

.

.

,

5.

.

.

.

.

10.

11.

12.

13.

14.

References

Penner, S. S. and Mullins, B. P.: Explosions, Detonations, Flammability and Ignition.

Pergamon Press, 1959.

Olfe, D. B. and Zakkay, V., ed.: Supersonic Flow Chemical Processes and Radiative

Transfer. Pergamon Press, 1964.

Rhodes, R. P., Harsha, P. T., and Peters, C. E.: Turbulent Kinetic Energy Analyses of

Hydrogen-Air Diffusion Flames. Acta Astronautica, Vol. 1, 1974.

KoUmann, W., ed.: Precliction Methods for Turbulent Flows. Hemisphere, 1980.

Libby, P. A. and William, F. A., ed.: Turbulent Reacting Flows. Springer-Verlag, 1980.

Murthy, S. N. B., ed.: Turbulent Mixing in Nonreacting and Reacting Flows. Plenum

Press, 1975.

Drummond, J. P., Rogers, R. C., and Evans, J. S.: Combustor Modeling for Scramjet

Engines. AGARD CP 275. Presented at AGARD Combustor Modeling, Cologne, Oct.

1979.

Drummond, P. J., Hussaini, M. Y., and Zang, T. A.: Spectral Methods For Modeling

Supersonic Chemical Flowfields. NASA-CR-172578, 1985.

Bilger, R. W.: Turbulent Flows with Nonpremixed Reactants. In Turbulent Reacting

Flows/Springer-Verlag, 1980.

Bray, S. F.: Turbulent Flows with Premixed Reactants. In Turbulent Reacting Flows,

Springer-Verlag, 1980.

O'Brien, E. E.: The Probability Density Function Approach to Reacting Turbulent

Flows. In Turbulent Reacting Flows, Springer-Verlag, 1980.

Lundgren, T. S.: Model Equation for Nonhomogeneous Turbulence. Physics of Fluids,

Vol. 12, No. 3, 1969.

Dopazo, C. and O'Brien, E. E.: An Approach to the Autoignition of a Turbulent

Mixture. Acta Astronautic.a, Vol. 1, 1974.

Dopazo, C. and O'Brien, E. E.: Functional Formulation of Nonisothermal Turbulent

Reactive Flows. Physics of Fluids, Vol. 17, 1975.

- 102 -



i

{

{

{

{

15.
Pope, S. B.: The Statistical Theory of Turbulent Flames. Phils. Trans. Royal Soc.
London, A291, 1979.

16. Glassman, I.: Combustion. Academic Press, 1977.

17.

18.

19.

20.

21.

Launder, B. E., Reynolds, W. C., and Rodi, W.: Turbulence Models and Their

Applications, Vol. 2. Eyrolls, 1984.

Daly, B. J. and Harlow, F. H.: Transport Equations in Turbulence. Physics of Huids,
Vol. 13, No. 11, 1970.

Rubesin, M. W.: A One-Equation Model of Turbulence for Use with Compressible
Navier-Stokes Equations. NASA TMX-73128, 1976.

Farshchi, M.: Prediction of Heat Release Effects on a Mixing Layer. AIAA Paper 86-
0058, 1986.

Harlow, F. H. and Nakayama, P. I.: Transport of Turbulence Energy Decay Rate. Los

Alamos National Laboratory, University of California Report LA3854, 1968.

22. Tenneks, H. and Lumley, J. L.: A First Course in Turbulence. The MIT Press, 1972.

3°

24.

25.

26.

27.

28.

29.

Launder, B. E., Reece, G., and Rodi, W.: Progress in the Development of a Reynolds-

Stress Turbulence Closure. Journal of Fluid Mechanics, Vol. 68, Part 3, 1975, p. 537.

Haminh, H., Kollmann, W., and Vandromme, D.: Reynolds Stress Model for

Compressible Flows. Final Report for Contract NASA NCCR-186, 1983.

Vandromme, D. D. and Haminh, H.: Solution of the Compressible Navier-Stokes

Equations: Applications to Complex Turbulent Flows. Von Karrnan Institute Lecture

Series in CFD, Belgium, 1983.

Rodi, W.: Turbulence Models and Their Application in Hydraulics. International

Association for Hydraulic Research, 1980.

Nagano, Y. and Hishida, M." Improved Form of the k-e Model for Wall Turbulent

Shear Flows. ASME I. of Fluids Engineering. Vol. 109, 1987, p. 156.

Patel, V. C., Rodi, W., and Scheuerer, G.: Turbulence Models for Near-Wall and Low

Reynolds Number Flows: A Review. AIAA Journal, Vol. 23, September 1985, p. 1308.

Jones, W. P. and Launder, B. E.: The Prediction of Laminarization with a Two-Equation

Model of Turbulence. Int. J. of Heat Mass Transfer, Vol. 15, 1972, p. 301.

- 103 -



30.

31.

32.

33.

34.

35.

36.

37.

Chien,K. Y.: Predictions of Channel and Boundary-Layer Flows with a Low Reynolds

Number Turbulence Model. AIAA |ournalj Vol. 20, January 1982, p. 33.

Papamoschou, D. and Roshko, A.: The Compressible Turbulent Shear Layer: An

Experimental Study. I. of Fluid Mechanics, Vol. 197, 1988, p. 453.

Zeman, O.: Dilitation Dissipation: The Concept and Application in Modeling

Compressible Mixing Layers. Physics of Fluids A..,Vol. 2, No. 2, 1990, p. 178.

Baldwin, B. and Lomax, H.: Thin Layer Approximation and Algebraic Model for

Separated Turbulent Flows. AIAA Paper 78-257, 1978.

Shuen, J. S. and Yoon, S.: Numerical Study of Chemically Reacting Flows Using an LU

Scheme. NASA-TM-180882, also AIAA-88-0436, 1988.

Reynolds, W. C.: STANJAN; Interactive Computer programs for Chemical Equilibrium

Analysis. Department of Mechanical Engineering, Stanford University, 1981.

Gordon, S. and McBride, B. J.: Computer Program for Calculation of Complex

Chemical Equilibrium Composition, Rocket Performance, Incident and Reflected

Shocks, and Chapman-Jouguet Detonations. NASA SP-273, 1976.

Pope, S. B.: Transport Equation for the Joint Probability Density Function of Velocity

and Scalars in Turbulent Flow. Physics of Flulds_ Vol. 24, No. 4, p. 588, 1981.

38. Lumley, J. L.: Stochastic Tools in Turbulence. Academy Press, 1970.

39. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, 1968.

40. Farshchi, M.: Second Order Closure Model for Turbulent Reacting Flows. Ph.D.

Thesis, University of California, Davis, 1984.

41. Dibble, R. W., Kollmann, W., Farshchi, M., and Scheffer, R. W.: Second-Order Closure

for Turbulent Nonpremixed Flames: Scalar Dissipation and Heat Release Effects. 21s___At

Symposium on Combustion/Combustion Institute, 1986, p. 1329.

42. Warhaft, Z. and Lumley, J. L.: An Experimental Study of the Decay of Temperature

Fluctuations in Grid Generated Turbulence. |. of Fluid Mechanics, Vol. 88, 1978, p. 659.

43. Jameson, A. and Yoon, S.: Lower-Upper Implicit Schemes with Multiple Grids for the

Euler Equations. AIAA |ournal, Vol. 25, No. 7, 1987, p. 229.

I

t

1

- 104 -



4.

Jameson, A., Schmidt, W., and Turkel, E.: Numerical Solutions of the Euler Equations

by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper
81-1259, 1981.

45. Yee, H. C." Upwind and Symmetric Shock Capturing Schemes. NASA TM 89464, 1987.

46.

47.

48.

49.

50.

Leveque, R. J. and Yee, H. C.: A Study of Numerical Methods for Hyperbolic

Conservation Laws with Stiff Source Terms. NASA TM 100075, 1988.

Shuen, J. S., Liou, M. S., VanLeer, B.: Inviscid Flux-Splitting Algorithms for Real Gases

with Non-Equilibrium Chemistry. Journal of Computational Physics, Vol. 90, No. 2,
1990, p. 371.

Westbrook, C. K.: Hydrogen Oxidation Kinetics in Gaseous Detonations. Combustion

Science and Technology, Vol. 29, No. 1-2, 1982, p. 67.

Reid, R. C., Prausnitz, J. M., and Sherwood, T. K.: The Properties of Gases and Liquids.
3rd Edition, McGraw-Hill Publishing Co., 1977.

Williams, F. A.: Combustion Theory, 2nd Edition, Benjamin/Cummings Publishing
Co., 1985.

51.
Brown, G. L., and Roshko, A.: On Density Effects and Large Structures in Turbulent

Mixing Layers. Journal of Fluid Mechanic_, Vol. 64, Part 4, 1974, p. 775.

Bogdanoff, D. W.: Compressibility Effects in Turbulent Shear Layers. AIAA Journal,
Vol. 21, No. 6, 1983, p. 926.

Goebel, S. G., Dutton, J. C. Krier, H., and Renie, J. P.: Mean and Turbulence Velocity

Measurements of Supersonic Mixing Layers. Experiments in Fluids, Vol. 8, 1990, p.
263.

54.

55.

56.

57.

Samimy, M. and Elliot, G. S.: Effects of Compressibility on the Characteristics of Free

Shear Layers. AIAA Journal, Vol. 28, No. 3, 1990, p. 439.

Elliot, G. S. and Samimy, M.: Compressibility Effects in Free Shear Layers. AIAA
Paper No. 90-0705, 1990.

Laderman, A. J.: Effect of Wall Temperature on a Supersonic Turbulent Boundary

Layer. AIAA Journal, Vol. 16, No. 7, 1978, p. 723.

Robinson, S. K., Seegmiler, H. L., and Kussoy, M. I.: Hot-wire and Laser Doppler

Anemometer Measurements in a Supersonic Boundary Layer. AIAA Paper 83-1723,
1983.

- 105 -



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

White, F. M.: Viscous Fluid Flow. McGraw-Hill, 1974.

Rohsenow, W. M. and Hartnett, J. P.: Handbook of Heat Transfer. McGraw-Hill, 1973,

p. 8-156.

Laderman, A. J. and Demetriades, A.: Turbulent Shear Stresses in Compressible

Boundary Layers. AIAA Journal, Vol. 17, No. 7, 1979, p. 736.

Sandborn, V. A.: A Review of Turbulent Measurements in Compressible Flow. NASA

TM X-62337, 1974.

Klebanoff, P. S.: Characteristics of Turbulence in a Boundary Layer with Zero Presure

Gradient. NACA TR 1247, 1955.

Kistler, A. L.: Fluctuation Measurements in a Supersonic Turbulent Boundary Layer.

The Physics of Fluids, Vol. 2, No. 3, 1959, p. 290.

Owen, F. K., Horstman, C. C., and Kussoy, M. K.: Mean and Fluctuating Flow

Measurements of a Fully Developed, Non Adiabatic Hypersonic Boundary Layer.

|ournal of Fluid Mechanics, Vol. 70, Pt. 2, 1975, p. 393.

Yanta, W. J. and Lee, R. E.: Determination of Turbulence Transport Properties with the

Laser Doppler Velocimeter and Conventional Time-Averaged Mean Flow

Measurements at Mach 3. AIAA |oumal, Vol. 14, 1976, p. 725.

Mikulla, V. and Horstmann, C. C.: The Measurement of Shear Stress and Total Heat

Flux in a Non-Adiabatic Turbulent Hypersonic Boundary Layer. AIAA Paper 75-119,

1975.

Settles, G. S., Fitzpatrick, T. J., and Bogdonoff, S. M.: Detailed Study of Attached and

Separated Compression Comer Flowfields in High Reynolds Number Supersonic Flow.

AIA.A lournal, Vol. 17, No. 6, 1979, p. 579.

Viegas, J. I., Rubesin, M. W., and Hortsman, C. C.: On the Use of Wall Functions as

Boundary Conditions for Two-Dimensional Separated Compressible Flows. AIAA

Paper 85-0180, 1985.

Billing, F. S. and Dugger, G. L.: The Interaction of Shock Waves and Heat Addition in

the Design of Supersonic Combustors. 12 th Symposium (Int.) on Combustion, The

Combustion Institute, 1969, p. 1125.

I

t
1
|

- 106-



70.

71.

72.

73.

Kollmann, W., Haminh, H., and Vandromme, D.: The Behavior of Turbulence

Anisotropy through Shock Waves and Expansions. 5 th Turbulent Shear Flows

Conference, Cornell University, 1985.

Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several

Space Dimensions, Springer Verlag, 1984.

Johnson, J. A., Zang, Y., and Johnson, L. E.: Evidence of Reynolds Number Sensitivity

in Supersonic Turbulent Shocklets. AIAA Journal, Vol. 26, 1988, p. 502.

Evans, J. S., Schexnayder, C. J., and Beach, H. L.: Application of a Two-Dimensional

Parabolic Computer Program to Prediction of Turbulent Reacting Flows. NASA-TP-
1169, 1978.

74. Chen, J. Y. and Kollmann, W.: Chemical Models for PDF Modeling of Hydrogen Air

Non-Premixed Turbulent Flames. To appear in Combustion and Flame, 1991.

- 107-



i

I

I
0



APPENDIX A

Two-Dimensional Expansion of the Governing Equations

Two distinct models for the prediction of compressible turbulent chemically reacting

flows were given in Chapter 1. Complete governing equations and their expansion in two-

dimensional space are presented here for each model. The RPLUS computer program is

modified to solve all equations in each set of governing equations simultaneously.
Therefore, the vector form of these equations is presented here. Flux Jacobian matrices for

each solution vector are also presented. First, finite rate reaction model equations are given.

Next, k-_ turbulence model equations, and then PDF combustion model equations are
given.

A.1 Finite Rate Reaction Model Equations

The transport equations governing the behavior of the turbulent flow of a chemically

reacting mixture of N gaseous species were modeled and nondirnensionalized in Chapter 1

and are given by Equations (1.5.1) to (1.5.4). These equations can be represented in a
compact vector form as

0 (F-Fv) O (G-G)
OQ + + v
O--t %x %y - S (A.I. I)

Utilizing the k-e turbulence closure model the above vectors can be given by;
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To obtain the Jacobian of the above flux vectors, pressure must be expressed in terms of

the elements of the solution vector Q. This relation in two dimensions is given by

^ { 1 2P " (F - I) pe t - _p(u + v 2) - pq -

where

(A.I.8)
N-I

Z pYn[[h _ - h ]- [h_N- hoNl]- plh_N _ hoNl }n-i n On

T N

f 7 C Y dT T O

^ = O n-i Pn n |

F T N , h = j c dT,
o Pnn

7- c Y dT - RT o

o n-i Pn n

h°fn = nth species formation enthalpy and T O =

The Jacobians of the above flux vectors are given as

formation ref. temp.

A - aF and B OG

0Q OQ

Using a transformation to an orthogonal curvilinear coordinate system

= _(x,y) and r/= _(x,y)

the transformed Jacobians are given as

= _xA + _yB

is given by the matrix A.1.1.

with t/.

and B = r/xA + r/yB

In this matrix Al_fn = (l_fn - hon ) - (l_fN - hoN). For B replace
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A.2 k-c Equations

The modeled and nondimensionalized transport equations for the turbulent kinetic

energy, q, and the rate of turbulent kinetic energy dissipation, c, are given by Equations
(5.16) and (5.17) in Chapter 1. Using the compact vector notation, the two-dimensional

expansion of these equations is given as

Lpuq'
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I

I

I

!
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v = LXCx x + XCxy ] Gv
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(A.2.2a)
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la2u 12 -a2u-2 [a2v 12 1a2_12
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!

1

I

The Jacobians of the flux vectors are given as

A [: °u] +o[::]aF B - -- -
Iii __ iii

aQ ' aQ

A = _x A + _yB - -U_x+V_y 0 ]
0 u_x+V_y

For B replace _ with q.

A.3 PDF Combustion Model Equations

The transport equations needed to be solved with a PDF model for a turbulent

chemical reaction in a compressible mixture of N gaseous species are given by Equations

(1.5.1), (1.5.3), (1.5.4), (1.6.18), and (1.6.25). Two-dimensional expansion of these equations in

a vector form is given as
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o (A. 3.2a)

_xy " PIvta;l_121 a_'t_2
ay

(A. 3.2b)

(A.3.2c)

. a#"W_2 (A. 3.2d)

The variations of the mean pressure with respect to the mean and variance of the

mixture fraction are required for the solution of the governing equations. Pressure

explicitly appears in both of the flux vectors F and G. Therefore, to obtain the Jacobian of

these flux vectors, pressure must be given in terms of the elements of the solution vector,

which includes pC and p0'_' . Pressure equations given in Section A.1 hold in general for a

mixture of reacting ideal gases, independent of the method of chemical reaction closure.

Therefore, then can be used to obtain variations of pressure with respect to p, pu, pv, and

pe t . However, there is no explicit dependence on the mean or the variance of the mixture

fraction. Implicitly, species mass fractions are decided from the integration of the PDF

which is locally fixed by values of the mean and the variance of the mixture fraction. The

use of this implicit relation and chain rules is too cumbersome to find derivatives of

pressure with respect to pC and p_. A more straightforward approach is to make use of

the definition of the mean pressure in the PDF closure model. As pointed out in Section

1.6.4, the mean value of any thermodynamic quantity can be obtained from Equation

(1.6.1 5). For the mean pressure this equation can be rewritten as

A- 10



1

" I P (@) i:(#)d@ (A.3.3)

0

where P(@) denotes pressure as a function of the mixture fraction. This function is obtained

from equilibrium thermodynamic reaction calculations, f($) is an assumed Beta function

given by Equation (1.6.11). The local form of the Beta function is fixed by the mean and the

variance of the mixture fraction as given by Equations
(1.6.11a) nd (1.6.11b). Therefore,

Equation (A.3.3) can be differentiated with respect to @and Following the notation

introduced in Section 1.6.4, these derivatives can be given by

1

a_ J p(#)r3__fL%aaa af ab (A. 3.4)

and
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_ j aa_. + abaf ap_.__)]d@a (p. , 0 a(p_ 2) a
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For _7/ab replace In @by ln(1-@) in the above equation.

(A.3.5)

(A.3.6)

(A.3.7)

(A.3.8)
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(A.3.9)

. (A.3. i0)

The Jacobian matrices are denoted by

aF 0G

A- a--Q and B- 0--_

" BIn the curvilinear coordinate system A = CxA + CyB_" given by the matrix A.3.1, where

DPQ5 denotes ap/a(p#)and DPQ6 denotes ap/a(p_"2). For B replace ¢ with q.
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P = P(p, e, O)

(H2 - k£r)

Figure 1.. 1 - Chemical equilibrium plot for P at fixed density.
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Figure 1.2 - Chemical equilibrium plot for T at fixed density.
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Figure 1.3- Chemical equilibrium plot for YH2
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Fig.4.8 Comparison of calculated (line) and measured (symbols: Evans et al., 1978)

product rfi(p) at x/D = 26.2 for a supersonic turbulent round jet flame burning H2 with a

coflowing air stream (Ma ° = 2.0 at jet pipe exit).
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Fig.4.15 Mean mixture fraction at x/D = 6.56 for a supersonic turbulent round jet flame

burning H2 with a coflowing air stream (Ma ° = 2.0 at jet pipe exit).
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Fig.4.16 Mean internal energy at z/D = 6.56 for a supersonic turbulent round jet flame

burning H2 with a coflowing air stream (Ma ° = 2.0 at jet pipe exit).
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Fig.4.19 Mean temperature at :riD = 6.56 for a supersonic turbulent round jet flame

burning H2 with a coflowing air stream (M_ = 2.0 at jet pipe exit).
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Fig.4.20 Variance of mixture fraction at :r,/D = 6.56 for a supersonic turbulent round jet

flame burning H2 with a coflowing air stream (M_* = 2.0 at jet pipe exit).
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Fig.4.21 Covariance of mixture fraction and internal energy at x/m = 6.56 for a super-

sonic turbulent round jet flame burning//'2 with a coflowing air stream (Ma ° = 2.0 at jet pipe
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Fig.4.25 Covaxianee of density and internal energy at :r/D = 6.56 for a supersonic tur-
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Fig.4.26 Variance of density at x/D = 6.56 for a supersonic turbulent round jet flame
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Fig.4.27 Variance of relative rate of volume expansion at z/O = 6.56 for a supersonic

turbulent round jet flame burning H2 with a coflowing air stream (M. ° = 2.0 at jet pipe exit).
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Fig.4.28 Pdf (smoothed) of mixture fraction at x/D = 6.56 and r/D = 0.14 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M_ = 2.0 at

jet pipe exit).
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Fig.4.29 Pdf (smoothed) of internal energy at x/D = 6.56 and riD = 0.14 for a super-

sonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at jet pipe

exit).
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Fig.4.30 Pdf (smoothed) of density at x/D = 6.56 and riD = 0.14 for a supersonic

turbulent round jet flame burning//2 with a coflowing air stream (M ° = 2.0 at jet pipe exit).
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Fig.4.32 Pdf of mixture fraction and internal energy at z/D = 6.56 and riD = 0.14 for

a supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at
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exit). Lower plot contains the same pdf in the form of iso-probability lines.
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Fig.4.37 Pdf (smoothed) of mixture fraction at x/D = 6.56 and riD = 0.46 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit).
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Fig.4.38 Pdf (smoothed) of internal energy at x/D = 6.56 and r/D = 0.46 for a super-

sonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at jet pipe

exit).
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Fig.4.39 Pdf (smoothed) of density at x/D = 6.56 and riD = 0.46 for a supersonic

turbulent round jet flame burning H2 with a coflowing air stream (M_ ° = 2.0 at jet pipe exit).
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Fig.4.40 Pdf (smoothed) of relative rate of volume expansion at x/D = 6.56 and r/D =

0.46 for a supersonic turbulent round jet flame burning Hz with a coflowing air stream
(M_ = 2.0 at jet pipe exit).
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Fig.4.41 Pdf of mixture fraction and internal energy at z/D = 6.56 and r/D = 0.46 for

a supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit). Lower plot contains the same pdf in the form of iso-probability lines.
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Fig.4.42 Pdf of density and relative rate of volume expansion at x/D = 6.56 and r/D =

0.46 for a supersonic turbulent round jet flame burning H2 with a coflowing air stream

(M ° = 2.0 at jet pipe exit). Lower plot contains the same pclf in the form of iso-probability
lines.
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Fig.4.43 Pdf of density and internal energy at z/D 6.56 and r/D = 0.46 for a super-

sonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at jet pipe

exit). Lower plot contains the same pdf in the form of iso-probability lines.
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Fig.4.44 Pdf of mixture fraction and density at z/D = 6.56 and r/D = 0.46 for a

supersonic turbulent round jet flame burning H_ with a coflowing air stream (M ° = 2.0 at

jet pipe exit). Lower plot contains the same pdf in the form of iso-probability lines•
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Fig.4.45 Pdf of internal energy and relative rate of volume expansion at x/D = 6.56 and

riD = 0.46 for a supersonic turbulent round jet flame burning//2 with a coflowing air stream

(M ° = 2.0 at jet pipe exit). Lower plot contains the same pdf in the form of iso-probability

lines.
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Fig.4.46 Mean mixture fraction at x/D = 30.14 for a supersonic turbulent round jet

flame burning H2 with a coflowing air stream (M ° = 2.0 at jet pipe exit).
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Fig.4.47 Mean internal energy at x/D = 30.14 for a supersonic turbulent round jet flame

burning//2 with a coflowing air stream (M. ° = 2.0 at jet pipe exit).
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Fig.4.48 Mean density at x/D = 30.14 for a supersonic turbulent round jet flame burning
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Fig.4.49 Variance of mixture fraction at x/D = 30.14 for a supersonic turbulent round

jet flame burning H2 with a coflowing air stream (M_ ° = 2.0 at jet pipe exit).
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Fig.4.50 Covariance of mixture fraction and internal energy at z/D = 30.14 for a super-

sonic turbulent round jet flame burning//2 with a coflowing air stream (M2 = 2.0 at jet pipe
exit).
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Fig.4.51 Covariance of mixture fraction and density at x/D = 30.14 for a supersonic

turbulent round jet flame burning//2 with a coflowing Mr stream (M_ = 2.0 at jet pipe exit).
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Fig.4.52 Covariance of mixture fraction and relative rate of volume expansion at z/D =

30.14 for a supersonic turbulent round jet flame burning H_ with a coflowing air stream

(M. ° = 2.0 at jet pipe exit).
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Fig.4.53 Variance of internal energy at z/D = 30.14 for a supersonic turbulent round jet

flame burning H2 with a coflowing air stream (M. ° = 2.0 at jet pipe exit).
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Fig.4.54 Covariance of density and internal energy at z/D = 30.14 for a supersonic

turbulent round jet flame burning H2 with a eoflowing air stream (M ° = 2.0 at jet pipe exit).
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Fig.4.55 Variance of density at z/D = 30.14 for a SUl_ersonic turbulent round jet flame

burning//2 with a coflowing air stream (M_ = 2.0 at jet pipe exit).
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Fig.4.56 Variance of relative rate of volume expansion at x/D = 30.14 for a supersonic

turbulent round jet flame burning H2 with a coflowlng air stream (g¢o = 2.0 at jet pipe exit).
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Fig.4.57 Pdf (smoothed) of mixture fraction at x/D = 30.14 and r/D = 0.38 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit).
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Fig.4.58 Pdf (smoothed) of internal energy at x/D = 30.14 and r/D = 0.38 for a

supersonic turbulent round jet flame burning H_ with a coflowing air stream (M_ = 2.0 at
jet pipe exit).
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Fig.4.59 Pdf (smoothed) of density at z/D = 30.14 and. r/D = 0.38 for a supersonic

turbulent round jet flame burning//2 with a coflowing air stream (M ° = 2.0 at jet pipe exit).
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Fig.4.60 Pclf (smoothed) of relative rate of volume expansion at x/D = 30.14 and r/D =

0.38 for a supersonic turbulent round jet flame burning H2 with a coflowing air stream

(M_ -- 2.0 at jet pipe exit).
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Fig.4.61 Pdf (smoothed) of mixture fraction at x/D = 30.14 and riD = 3.66 for a

supersonic turbulent round jet flame burning H2 with a coil.owing air stream (M_ = 2.0 at

jet pipe exit).
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Fig.4.62 Pdf (smoothed) of internal energy at x/D = 30.14 and r/D = 3.66 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M_ = 2.0 at
jet pipe exit).
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Fig.4.63 Pdf (smoothed) of density at x/D = 30.14 and riD = 3.66 for a supersonic

turbulent round jet flame burning H_ with a coflowing air strea_m (Ma ° = 2.0 at jet pipe exit).
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Fig.4.64 Pdf (smoothed) of relative rate of volume expansion at x/D = 30.14 and riD =

3.66 for a supersonic turbulent round jet flame burning H2 with a coflowing air stream

(M= ° = 2.0 at jet pipe exit).
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Fig.4.65 Pdf (smoothed) of mixture fraction at x/D = 30.14 and riD = 6.55 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (Ma ° = 2.0 at

jet pipe exit).
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Fig.4.66 Pdf (smoothed) of internal energy at x/D = 30.14 and riD = 6.55 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M_ = 2.0 at
jet pipe exit).
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Fig.4.67 Pdf (smoothed) of density at x/D -- 30.14 and r/D = 6.55 for a supersonic

turbulent round jet flame burning//2 with a coflowing Mr stream (M z = 2.0 at jet pipe exit).
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Fig.4.68 Pdf (smoothed) of relative rate of volume expansion at x/D = 30.14 and rid =

6.55 for a supersonic turbulent round jet flame burning H2 with a coflowing air stream

(M. ° = 2.0 at jet pipe exit).
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Fig.4.69 Pdf of mixture fraction and internal energy at z/D = 30.14 and r/D = 3.66 for

a supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit). Lower plot contains the same pdf in the form of iso-probability lines.
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Fig.4.70 Pdf of density and relative rate of volume expansion at, :c/D = 30.14 end

r/D = 3.66 for a supersonic turbulent round jet flame burning//2 with a coflowing air stream

(M_ = 2.0 at jet pipe exit). Lower plot contains the same pdf in the form of iso-probability

lines.
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Fig.4.71 Pdf of density and internal energy at x/D = 30.14 and r/D - 3.66 for a

supersonic turbulent round jet flame burning/-/2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit). Lower plot contains the same pdf in the form of iso-probability lines.



Fig.4.72 Pdf of mixture fraction and density at z/D = 30.14 and rid = 3.66 for a

supersonic turbulent round jet flame burning H2 with a coflowing air stream (M ° = 2.0 at

jet pipe exit). Lower plot contains the same pdf in the form of iso-probability lines.
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Fig.4.73 Pdf of internal energy and relative rate of volume expansion at z/D = 30.14 and

r/D = 3.66 for a supersonic turbulent round jet flame burning H2 with a coflowing air stream

(M ° = 2.0 at jet pipe exit). Lower plot contains the same pclf in the form of iso-probability
lines.




